
LBD: Decouple Relevance and Observation for
Individual-Level Unbiased Learning to Rank

Mouxiang Chen1,4∗, Chenghao Liu2∗†, Zemin Liu3, Jianling Sun1,4†
1Zhejiang University, 2Salesforce Research Asia, 3 National University of Singapore,

4Alibaba-Zhejiang University Joint Institute of Frontier Technologies
{chenmx,sunjl}@zju.edu.cn, chenghao.liu@salesforce.com, zeminliu@nus.edu.sg

Abstract

Using Unbiased Learning to Rank (ULTR) to train the ranking model with bi-
ased click logs has attracted increased research interest. The key idea is to ex-
plicitly model the user’s observation behavior when building the ranker with a
large number of click logs. Considering the simplicity, recent efforts are mainly
based on the position bias hypothesis, in which the observation only depends
on the position. However, this hypothesis does not hold in many scenarios
due to the neglect of the distinct characteristics of individuals in the same po-
sition. On the other hand, directly modeling observation bias for each individ-
ual is quite challenging, since the effects of each individual’s features on rel-
evance and observation are entangled. It is difficult to ravel out this coupled
effect and thus obtain a correct relevance model from click data. To address
this issue, we first present the concept of coupling effect for individual-level
ULTR. Then, we develop the novel Lipschitz and Bernoulli Decoupling (LBD)
model to decouple the effects on relevance and observation at the individual level.
We prove theoretically that our proposed method could recover the correct rel-
evance order for the ranking objective. Empirical results on two LTR bench-
mark datasets show that the proposed model outperforms the state-of-the-art base-
lines and verify its effectiveness in debiasing data. Our codes are available at
https://github.com/Keytoyze/Lipschitz-Bernoulli-Decoupling.

1 Introduction

Learning to Rank (LTR) has been widely used in modern information retrieval systems, which aims
to learn a ranking model that sorts documents with their relevance. Recently, using implicit feedback
(e.g. clicks) instead of relevance labels (typically obtained by human annotation) to train the ranking
model has become popular since implicit feedback is an attractive proxy of relevance, which is cheap
and relatively easy to obtain on a large scale [38]. However, they inherently contain a lot of bias from
user behavior [28]. Using Unbiased Learning to Rank (ULTR) to remove these biases has attracted
increasing research interest [1, 29]. The key is to factorize the clicks into relevance probabilities and
observation probabilities and model a user’s observation probability on an item in a ranking list. By
reweighing the click signals based on the reciprocal of observation probabilities, ULTR provides an
unbiased estimate of the ranking objective.

Most of the existing ULTR methods are based on the position bias hypothesis [29, 4, 43, 17, 3,
14], which assumes that the observation only depends on the position. We refer to this method
as group-level ULTR method, in which various heterogeneous features (typically encoded with the

∗Equal contribution.
†Corresponding authors.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/Keytoyze/Lipschitz-Bernoulli-Decoupling

information of query, document, and user) share the same observation probability according to some
property. However, the observation bias inherently varies across individuals. For example, the exact
match in result titles and abstracts (which is usually shown in a different presentation style) affects
users’ attention and judgment, known as attractive bias [45, 7]. Except for attractive bias, there are
lots of factors that can influence a user’s observation [10, 47, 37, 7, 24, 31, 32]. These factors are
encoded in (or can be inferred from) the features, which leads to heterogeneous observation.

To be in line with these real phenomena, we argue there is an urgent need to develop an individual-
level ULTR, which can capture the effect of heterogeneous features for observation behavior. That
is to say, the observation model should be a function related to documents.

Features
(Encoded with query,
document and user)

Relevance

Observation
(bias)

Click

presentation, quality, click necessity,
 domain, search intent, ...

TF-IDF, BM25, domain,
search intent, ...

Figure 1: The graphical model when individual-level observa-
tion bias exists.

Unfortunately, this problem is very
challenging. As shown in Figure 1,
there exists a coupling effect from
features to observation and rele-
vance. There are infinite solutions
to factorize the click rate into the
relevance function and observation
function (all of them are functions
of features), but few of them imply
a correct ranking model. In the ex-
treme case, a naive ranking model
which outputs identical relevance
probability still has a chance to perfectly fit the click data with a properly designed association
between features and observation [41]. A straightforward solution to avoid coupling is to divide the
features manually into two separate parts: one related to relevance and the other related to obser-
vation. But it’s intractable in practice because some of these features affect both. For example, the
exact match in result titles and abstracts affects observation (attractive bias), but on the other hand,
it is naturally an important feature encoding how relevant the document is. Besides, result domain
[7] and users’ search intent [37] are also common factors affecting both.

To address the coupling effect problem, we find that it is unnecessary to correctly estimate the true
relevance probability (named hard decoupling), yet only need to recover the correct relevance order
from click data (named soft decoupling) because of the ranking objective. Given that we don’t know
the true relevance, this goal is difficult to achieve directly on the ranking model. We instead modify
the observation model, which helps to achieve soft decoupling when the click probability estimation
is unbiased. We propose two special observation models, the Lipschitz Observation Model (LOM),
which has a Lipschitz constraint β on the observation function, and the Bernoulli Observation Model
(BOM) which randomly cancels debiasing operation with a probability of t on the observation func-
tion output. The two models act on different mechanisms, thus they are complementary and can be
combined. We provide a theoretical guarantee that when β and t are bounded, these two observation
models can achieve soft decoupling whenever estimating unbiased click probability with a ranking
model. Given this, we propose a principled novel individual-based ULTR framework, called Lip-
schitz and Bernoulli Decoupling (LBD) model. We conducted comprehensive experiments on two
LTR benchmark datasets, which shows that the proposed LBD outperforms the baseline methods and
verifies its effectiveness in debiasing data. We further studied the different application areas of the
two decoupling techniques and found that the performance can be better when they are combined.

To the best of our knowledge, we are the first to study the coupling effect for ULTR and propose a
feasible solution to decouple the effects. The main contributions of this work are:

1. We present the concept of coupling effect for individual-level ULTR, as well as two targets to
achieve decoupling.

2. We propose a novel Lipschitz and Bernoulli Decoupling model, which could help to decouple the
effects on relevance and observation. We provide theoretical proof to guarantee the decoupling
ability of our proposed techniques.

3. We conducted comprehensive experiments on two LTR benchmark datasets in the coupling effect
scene, which shows that the two decoupling techniques have different application areas, and
combining them can outperform the baseline methods.

2

2 Related Work

Debiasing Click Data for LTR. Debiasing click data is an important research direction in the infor-
mation retrieval field. We review this line of related work in § A.

Individual-Level Observation. There is much work finding that the observation bias can vary from
instance to instance. The user’s observation can be influenced by result type [32], result quality [10],
search intent [37], result domain [7, 24], exact match [45], and even the relevance itself [31]. These
factors can be inferred from document features. Particularly, [44] found that in mobile search,
the user may be directly satisfied with the result without clicking any links on certain kinds of
documents. [37] argued that users with different search intent might have different examination
behavior. All these discoveries suggest the necessity to estimate the bias at the individual level.

Recently, researchers attempted to find solutions in ULTR fields to deal with individual-level ob-
servation bias. [23] proposed to manually impose a stronger regularization on the position bias
estimated by Unbiased LambdaMART, to alleviate the influence of user’s different click behaviors,
while it’s heuristic and has no theoretical proof. [30] proposed wLambdaMART that estimates the
confidence of click data with a few labeled data to correct bias, without the need to design a specific
bias type. But this method requires extra labeled data. [39] employed heterogeneous treatment ef-
fect estimation techniques to estimate the bias between the position k and the position 1. However,
this method is based on the assumption that the click rates at the first position reveal their accurate
relevance. This is only true when the observation probability at the first position is constant.

3 Preliminaries

In this work, we use bold-faced letters to denote vectors, upper-case letters to denote random vari-
ables, and the corresponding lower-case letters to denote values. P (·) denotes the distribution of a
random variable.

Generally, the core of LTR is to learn a ranking model f , which assigns a relevance score to a
document with its query-document features X ∈ Rl. Then, the documents for a query can be sorted
in descending order of their scores. In traditional LTR, the ranking model is directly learned with
the true relevance score R to make the ranking order of the query list close to the optimal order [29].
In the click setting, users’ click logs are used as substitutes of relevance due to their abundance and
cheapness. While click signals are naturally biased from the true relevance [27], much prior work
follows the examination hypothesis to address it, which can be formulated as:

cp(x) = r(x) · op(x), (1)

where r(x) = Pr(R = 1 | X = x), op(x) = Pr(O = 1 | X = x, P = p) and cp(x) = Pr(C =
1 | X = x, P = p) denote the probabilities of relevance, observation and click, and P denotes the
position. By explicitly modeling the bias effect via observation probability, it is able to attain an
unbiased estimate of the ranking objective.

4 Our method

In this section, we first introduce the coupling effect in § 4.1, and propose two decoupling methods
in § 4.2 and § 4.3.

4.1 Coupling Effect

Let r̂(x; θ1) denote the estimation of ranking model, and ô(x; θ2) denote the estimation of obser-
vation model. We use clicks to train the two models using Eq.(1), to let their production close to
the click. What we care about is if the relevance model is correct when the model converges. To
simplify the later analysis, we suppose that the model has a universal approximation capacity [22]
to predict an unbiased click probability, and make the following assumption.
Assumption 1 (Unbiased Click Prediction). There exists a parameter space Θ∗ which consists of
pairs of ranking model parameter and observation model parameter, such that for all (θ∗1 , θ

∗
2) ∈ Θ∗,

the predictive click probability is unbiased:

r̂(x; θ∗1) · ôp(x; θ∗2) = cp(x), ∀x ∈ Rl, p ∈ [n].

3

From Assumption 1 we can find that the factorization of relevance probability r̂(x; θ∗1) and ob-
servation probability ôp(x; θ

∗
2) is unidentifiable given the click probability cp(x), which makes it

challenging to uncover the correct ranking model. This is because the features X have an effect on
both relevance R and observation O. It’s difficult to distinguish which parts of the features affect
relevance and observation, respectively. In the extreme case, the ranking model will degenerate into
a trivial case that always predicts the same scores for all documents [41]. We refer to this problem
as the coupling effect.

Suppose the correct factorization is cp(x) = r(x)·op(x), where r(x) is the true relevance and op(x)
is the true observation. To achieve a good decoupling of the features’ effect on relevance and ob-
servation, we aim to make r̂(x; θ1) close to r(x) whenever predicting an accurate click probability.
Based on this, we introduce the definition of hard decoupling as follows.
Definition 1 (Hard Decoupling). For any features x with the true relevance r(x), a parameter space
Θ′ ⊆ Θ∗ can do hard decoupling, if for all (θ∗1 , θ

∗
2) ∈ Θ′, we have r(x) = r̂(x; θ∗1). Θ

∗ is defined
in Assumption 1.

Considering the pairwise comparison of the ranking objective, we further relax the hard decoupling
constraint and refer to this as soft decoupling as follows.
Definition 2 (Soft Decoupling). For any two features x1 and x2, without loss of generality we
suppose r(x1) ≥ r(x2). A parameter space Θ′ ⊆ Θ∗ can do soft decoupling, if for all (θ∗1 , θ

∗
2) ∈

Θ′, we have r̂(x1; θ
∗
1) ≥ r̂(x2; θ

∗
1). Θ

∗ is defined in Assumption 1.

Soft decoupling requires identifying the relevance, which is challenging when relevance is unob-
served. In this subsection, we propose two mechanisms (Lipschitz Decoupling and Bernoulli De-
coupling) for soft decoupling with theoretical guarantees. From this point forward, we assume that
all of the parameters θ take the value from Θ∗, and omit θ of r̂(·; θ) and ôp(·; θ) for ease of notation.

4.2 Lipschitz Decoupling

Usually, the rate of change between the observation and features will not be substantial in real
scenarios. Therefore, we propose modifying the observation model’s smoothness to make it match
the true observation function, which helps to achieve soft decoupling.

We start with defining the Lipschitz continuity for a function. Let ||·|| be a norm on Rl. In this work,

we employ the Euclidean norm (L-2) when not mentioned otherwise: ||x|| = ||x||2 =
√∑l

i=1 x
2
i .

Definition 3 (Lipschitz Continuity). A function f(x) : Rl → R is α-Lipschitz to the input x if

|f(x′)− f(x)| ≤ α||x′ − x||,

where α is referred to as the Lipschitz constant.

Particularly, if an α-Lipschitz function f is differentiable, we have ||∇xf(x)|| ≤ α. We suppose
r(x), op(x), r̂(x) and ôp(x) are all differentiable.
Assumption 2 (True Observation Lipschitz). For each p ∈ [n], the true observation op(x) is α-
Lipschitz.

It assumes that there is an upper bound on the rate at which the true observation changes with the
features. This is a reasonable extension for well-known position-based model [29], which assumes
that α = 0. Similarly, we assume the observation estimation is also Lipschitz. We refer to this kind
of observation model as Lipschitz Observation Model (LOM).
Definition 4 (Lipschitz Observation Model). An observation model is β−Lipschitz observation
model (β-LOM), if its estimation ôp(x) is β-Lipschitz for all p ∈ [n].

We claim that soft decoupling can be achieved by selecting a lower β, as the following theorem.
Theorem 1 (Lipschitz Decoupling). For any two features x1 and x2, without loss of generality we
suppose r(x1) ≥ r(x2). For a β-LOM, if the following condition is satisfied,

r(x1)

r(x2)
− 1 ≥ op(x1)

ôp(x1)

{
inf

γ∈Γ(x1,x2)

∫
γ

βop(x) + αôp(x)

o2p(x)
||dx||

}
,

4

where Γ(x1,x2) denotes the collection of all curves from point x1 to point x2. Then we have:
r̂(x1) ≥ r̂(x2).

Remark 1. If the gap between r(x1) and r(x2) is large (i.e., r(x1)
r(x2)

is large) and α is small enough,
there exists a β such that the condition can be satisfied. Namely, when the true observation doesn’t
change too fast with the features, we can select a lower β to achieve soft decoupling.

At a high level, β-LOM controls the capacity of the function space Θ∗ by restricting the Lipschitz
constant β. While a low β benefits the decoupling, it also suffers from the risk of underfitting.
For example, if we adopt a 0-LOM (known as the Position-based Model) in the setting that the
true observation has a large Lipschitz constant, we may not find a r̂(x) and a ôp(x) such that their
product is equal to a given click rate cp(x). In other words, β has a lower bound. This can be shown
formally in the following theorem.

Theorem 2 (Lower Bound of β). Let c(x) denote a vector containing click rates at each position:

c(x) = (r(x)o1(x), r(x)o2(x), . . . , r(x)on(x))
⊤
.

For any two different features x1 and x2, we have

β ≥ inf
m,n≥1

||mc(x1)− nc(x2)||∞
||x1 − x2||2

.

Remark 2. We consider a special situation where the true observation is 0-Lipschitz (α = 0). In this
case, o is no longer a function of x but a constant, thus we can find m,n such that mc(x1)−nc(x2)
is a zero vector, and the lower bound of β can be zero. When the true observation has a large
Lipschitz number, mc(x1) − nc(x2) can no longer be a zero vector and β should be larger. It
means the models should change quickly with the input feature to fit clicks.

Theorem 1 and Theorem 2 give the upper bound and lower bound of β, respectively. The proofs of
these two theorems are provided in Appendix § B. Since the bounds focus on the pairwise compar-
ison of documents and it’s difficult to find the best parameter for the global dataset, in practice we
can tune the value of β to achieve the best global effect for soft decoupling. We refer to this method
as Lipschitz Decoupling.

4.3 Bernoulli Decoupling

Unfortunately, when α is large in a given dataset, it’s difficult to select a proper β such that the
upper bound and the lower bound are satisfied at the same time. Under this circumstance, it may
perform even worse than that without any debiasing operation (see § 6.3 for discussion). As a
complementary, we propose another decoupling technique, named Bernoulli Decoupling. Unlike
Lipschitz Decoupling, which makes constraints on the observation model’s estimation ôp(x; θ2),
we explicitly add an additional sampling step to transform its output, as follows:

γ ∼ Bernoulli(1− t), ô′p(x; θ2, t) = 1 + (ôp(x; θ2)− 1) γ.

That is to say, we randomly cancel the debiasing operation with a certain probability t (i.e., force
the observation model to predict 1 as an observation score and let the ranking model learn directly
from clicks). Since the features are generally collected for the ranking task, the effects from features
to relevance are usually stronger than the ones from features to observation. Thus, we hope the
relevance model could learn more effects from features to clicks than the observation model. The
Bernoulli sampling prevents the relevance model from over-relying on a wrong observation model
and encourages the relevance model to relearn what was learned by the observation model. The
probability t can be seen as a global parameter to control the strength of relevance effects. Similar
to our method, Zhao et al.[46] also uses a dropout technique to prevent the model over-relying on
the position. We define the observation model based on this new sampling process as t-Bernoulli
Observation Model (t-BOM).

For convenience, we denote the expectation E(ô′p(x; θ2, t)) as the estimation of the observation
model after transformation, and Assumption 1 holds based on this expectation. We can prove that
by choosing a sufficiently large t, BOM can achieve soft decoupling:

5

Theorem 3 (Bernoulli Decoupling). For any two different features x1 and x2, without loss of gen-
erality we suppose r(x2) ≥ r(x1). For a t−BOM, if the following condition is satisfied,

t ≥ r(x1)

r(x2)

1 +
α||x1 − x2||
sup
p

op(x2)

 ,

then we have: r̂(x2) ≥ r̂(x1).

Remark 3. If the true observation op(x) is 0-Lipschitz (i.e., α = 0), there must exist a t ≤ 1 making
the above error condition satisfied to achieve soft decoupling. For a larger Lipschitz number, we can
increase the value of t appropriately.

Similar to LOM, BOM is another method to control the capacity of Θ∗, and it also suffers from the
risk of underfitting. In order to make it fit the click rates, t has an upper bound.

Theorem 4 (Upper Bound of t). For any feature x and a t−BOM, we have

t ≤
inf
p
op(x)

sup
p

op(x)
.

Theorem 3 and Theorem 4 give the lower bound and the upper bound of t respectively. The proofs of
the theorems are provided in Appendix § B. Like LOM, we take t as a tuning parameter in practice.
We refer to this method as Bernoulli Decoupling.

Bernoulli Decoupling is a complement to Lipschitz Decoupling, and they can be used simultane-
ously to improve the efficiency of decoupling. This is because the range in which the two hyper-
parameters take effect is an ”or” relationship: Even if β is outside the scope of Theorem 1 and
Theorem 2, as long as t is within the scope of Theorem 3 and Theorem 4, the combined model can
still achieve soft decoupling. This shows that it is beneficial to combine the two models together.

Finally, we propose our (β, t)-Lipschitz and Bernoulli Decoupling (LBD) model, which combines
the β-LOM and t-BOM. We treat LBD as our complete solution for individual-based ULTR.

5 Model Implementation

gradient
penalty

Lipschitz
Decoupling

Bernoulli
Decoupling

Figure 2: Framework of the proposed LBD.

Up to this point, we have shown that a (β, t)-LBD can effectively decouple clicks on a relatively low-
Lipschitz observation dataset. In this section, we first introduce the implementation of the proposed
LBD, then present the optimization objective of the proposed model. The overall model architecture
is illustrated in Figure 2.

We first use a neural network f as the ranking model (take features as input) and a neural network
g as the observation model (take features and position as inputs), and output the relevance and the
observation: r̂ = f(x), ôp = gp(x).

6

Lipschitz Decoupling Based on Theorem 1 and 2, we need to enforce a proper Lipschitz con-
straint on the observation model to employ Lipschitz Decoupling. Since we use a neural net-
work to implement the observation model, it’s difficult to directly control the Lipschitz constant
without adjusting the network structure too much. As an easy alternative, [19] proposed to add
a penalty on the gradient norm. Similar to them, we employ a gradient penalty loss function:
Lgp(x) = λ

∑n
i=1 ||∇x(ôi)||2. This is based on the fact that a differentiable function is k-Lipschtiz

if and only if it has gradients with the norm at most k everywhere. The gradient penalty loss encour-
ages the model to have a low Lipschitz constant, and we can adjust λ to control the penalty level and
obtain models with different Lipschitz constants. Thus, λ can be a substitute for β.

Bernoulli Decoupling Based on Theorems 3 and 4, in order to implement the Bernoulli Decou-
pling technique and avoid degradation of the debiasing process, we sample a γ from Bernoulli distri-
bution parameterized by 1−t. Our final logarithmic observation probability is generated by log ô′p =
γ log ôp, where γ ∼ Bernoulli(1− t). The final predictive click score is: log ĉp = log r̂ + log ô′p.

Objective Function and Training Process Similar to [4], we adopt a list-wise loss based on
softmax cross entropy. Given a query q with the document ranking list πq = {x1,x2, · · · ,xn}, we
generate click ĉp for feature xp at each position p. Suppose the real click signals for each document
in πq are c1, c2, · · · , cn, we use the following supervise loss to train our models:

Lsv(q) = −
n∑

i=1

ci
exp(log ĉi)∑n
j=1 exp(log ĉj)

. (2)

Finally, the objective function based on a query q can be written as L(q) = Lsv(q)+
∑n

i=1 Lgp(xi).
We jointly update the ranking model and the observation model with the derivatives of L(q) and
repeat the process until the algorithm converges.

6 Experiments

In this section, we describe our experimental setup and show the empirical results.

6.1 Experimental Setup

Dataset We followed the standard setup in CLTR [5, 4, 15, 39] and conducted semi-synthetic
experiments on two widely used benchmark datasets: Yahoo! LETOR‡ [12] and Istella-S§ [33]. We
provide further details for these datasets in Appendix § C.1. We followed the given data split of
training, validation and testing. To generate initial ranking lists for click simulation, we followed
the standard process [29, 4, 15] to train a Ranking SVM model [26] with 1% of the training data
with relevance labels, and sort the documents. Based on these initial ranking lists, we sampled clicks
according to the examination hypothesis. Following the steps proposed by [13], we set the relevance
probability to be:

Pr(R = 1 | X = x) = ϵ+ (1− ϵ)
2yx − 1

2ymax − 1
, (3)

where yx ∈ [0, ymax] is the relevance level of x by human annotation, and ymax = 4 in both of the
two datasets. ϵ is the click noise level and we set ϵ = 0.1 as the default setting.

To the best of our knowledge, we are the first to study the coupling effects, thus there is no precedent
for the observation simulation. In order to simulate the observation, We first select some crux
features as the factors that are related to observation, such as result type, result quality or search
intent, etc. Because the exact meaning of the features given by the datasets is unknown, we follow
the method in previous work [39, 15] to select some features as substitutes: (1) use normalized
features and relevances in the total dataset to train ExtRa Trees [18]; (2) based on this model, select
and combine the top-10 important features as crux features. We adopted the methodology in [39] to
model the feature’s influence on observation. The observation probability is set to be:

Pr(O = 1 | X = x, P = p) = vmax{w⊤fsel(x
′)+1,0}

p ,

‡https://webscope.sandbox.yahoo.com/
§http://quickrank.isti.cnr.it/istella-dataset/

7

https://webscope.sandbox.yahoo.com/
http://quickrank.isti.cnr.it/istella-dataset/

where vp is the position-based examination probability at position p by eye-tracking studies [27]. w
is a 10-dimensional vector uniformly drawn from [−η, η], where η is a hyperparameter to control
the dependency between the observation and crux features. x′ denotes the crux features of x. Note
that η can be explained as the coupling level between relevance and observation.

Baselines We combined the state-of-the-art ULTR methods and two LTR models for comparison.
Debiasing methods include Vectorization [14], RegressionEM [43], DLA [4], PairDebias [23],
HTE [39], Labeled Data (uses human-annotated relevance labels to train the ranker directly) and
Click Data (uses the raw click data to train the ranker directly). Ranking models include DNN and
Linear. We adopted the codes in ULTRA framework [5, 6] to implement RegressionEM, DLA,
PairDebias and the ranking models, and kept the same hyperparameters. Note that Regression-EM,
DLA and PairDebias are all group-level ULTR methods. HTE is an individual-level ULTR, but it’s
not a jointly learning algorithm, so we compared it in another scene.

Our method is referred to as LBD. We also use three degenerate versions for ablation study: (1)
set t = 0 to remove the Bernoulli sampling step (named as LBDLips), (2) set λ = 0 to remove
the gradient penalty loss function (named as LBDBer), and (3) remove both (named as Unlimited).
Training details can be found in § C.2.

6.2 Performance on different rankers and datasets

Table 1: nDCG@10 performance of different methods on two datasets (η = 0.1). Significant
performance (p-value < 0.005) improvement/degradation compared to the best baseline (except for
Labeled Data) by t-test is denoted as +/-. Table 4 in the appendix shows the full results.

Dataset Yahoo! Istella-S
Ranker DNN Linear DNN Linear

Labeled Data 0.764 0.747 0.729 0.689
DLA 0.755 0.741 0.696 0.667

Vectorization 0.751 0.741 0.691 0.672
PairDebias 0.739 0.738 0.691 0.678

RegressionEM 0.746 0.720 0.623 0.594
Click Data 0.741 0.737 0.701 0.680
Unlimited 0.752 0.719− 0.687− 0.592
LBDLips 0.757+ 0.744+ 0.686− 0.659−

LBDBer 0.754 0.742 0.707+ 0.679
LBD 0.758+ 0.746+ 0.709+ 0.680

We first study the performance of jointly learning-based ULTR models. Table 1 summarizes the
NDCG@10 results about the performance of different rankers on different datasets. We see that our
proposed LBD significantly outperforms almost all the other baseline methods since we properly
handle the coupling effect. The results of other baselines are compatible with those reported in [6].
Particularly, we have the following findings:

1. LBD works better than LBDLips and LBDBer, which indicates that using Lipschitz Decoupling
and Bernoulli Decoupling at the same time is better than using them alone. The reason seems to
be that the two decoupling methods have different conditions (see Theorem 1 and Theorem 3).
When using them together, the scope of decoupling can be expanded.

2. Unlimited works worst than almost all the best baselines, indicating the existence of the coupling
effect. If we train the models unlimitedly, the performance would be quite bad. Additionally, the
coupling effect is more serious when using the Linear ranker.

3. Lipschitz Decoupling performs better than Bernoulli Decoupling on Yahoo! dataset, while the
opposite is true on the Istella-S dataset. It shows that the application of two decoupling methods
is tightly related to the data distribution.

6.3 Performance on different coupling levels

In this experiment, we investigate the performance under different degrees of coupling level on the
Yahoo! dataset, where the ranker is DNN. We vary η from 0 to 0.6 when generating clicks.

8

0.0 0.2 0.4 0.6
0.70

0.71

0.72

0.73

0.74

0.75

0.76

nD
CG

@
10

LBD
DLA
PairDebias
RegressionEM
Click Data

(a) With Baselines

0.0 0.2 0.4 0.6
0.70

0.71

0.72

0.73

0.74

0.75

0.76

nD
CG

@
10

LBD
LBDLips

LBDBer

Unlimited
Click Data

(b) With Decoupling Techniques

0.0 0.2 0.4 0.6
0.73

0.74

0.75

0.76

nD
CG

@
10

LBD
LBD-HTE-Oracle
HTE
HTE-Oracle

(c) With Intervention Methods

Figure 3: Performance across different coupling levels η. The larger the value of η, the stronger the
influence of features on observation. The variance is displayed with the shadow areas.

Figure 3(a) shows the influence of coupling levels on different offline ULTR methods. We can
observe that our model achieves the best performance under all degrees of coupling level. When the
observation is 0-Lipschitz (i.e., η = 0), our model and DLA perform similarly, since both of them
employ a similar listwise loss function. The debiasing performance of other baselines diminishes
with the increased coupling level. For a large coupling level (η ≥ 0.3), all baselines perform worse
than the raw click data. In contrast, our proposed method always performs better than click data,
which shows the strong decoupling ability of LBD. Besides, our method exhibits a downward trend
with the increased coupling level, which demonstrates that it’s more difficult to decouple the effects
when the true observation has a large Lipschitz constant.

Figure 3(b) shows the performance of different decoupling methods we propose in this work. One
can see that for a low degree of coupling level (η < 0.2), LBDLips performs better than LBDBer,
which implies that LOM can decouple the effects under a low Lipschitz observation dataset. For a
large coupling level, LOM is worse than BOM in turn. One explanation is that BOM can avoid the
deterioration of ULTR when the relevance and observation effects are difficult to decouple since it
randomly drops out the debiasing operation. Besides, LBD always performs better than LBDLips

and LBDBer, once again showing that using them together could expand the scope of decoupling.

The previous study focuses most on joint-learning ULTR methods. To compare the Heterogeneous
Treatment Effect (HTE), we conduct another experiment based on intervention data. Following
[39], we simulate 2,560,000 queries for the intervention experiment before training the ranking
model (this number is equal to the number of total queries we used to train models). For each
query, we randomly chose a k ∈ [n] and swapped the document at the first position with the one
at the k-th position. We collected clicks generated on these ranking lists and calculated the HTE
estimator τ̂k(x). Based on τ̂k(x), we debiased the click data and use it to train a ranking model
directly. We also used an accurate HTE estimator τk(x) from the click model we used, which can
be regarded as the upper bound of the HTE method. Based on the clicks corrected with τk(x), we
train a ranking model directly (named HTE-oracle). We also use these clicks to train our model
(named LBD-HTE-oracle).

We present the results in Figure 3(c). We can observe that our LBD (trained without any intervention
data) performs even better than HTE and HTE-oracle in a low degree of coupling level because HTE
is based on an assumption that the click rates at the first position can reveal the correct relevance,
which is biased when the observation probability is not constant. For a high degree of coupling
level, HTE performs better than our method. One possible reason is that intervention can augment
the dataset (since each document has an opportunity to display at the top position), which is helpful
when the effects are difficult to decouple. Besides, when our model is trained on the clicks corrected
with the oracle HTE, it can always outperform the vanilla HTE method. This demonstrates once
again that HTE is still biased and verifies our decoupling effectiveness.

6.4 Hyper Parameter Analysis

From the previous discussion, we know that the hyperparameters should have an upper bound and
lower bound depending on the data. To investigate it, we study the performance with different hyper-
parameters. Figure 4 shows the results when changing hyper parameters. We can see that there is a
focal point on each heat map, and the grid points around the focal point have a lower performance,

9

0 1 100 10000

0.
0

0.
1

0.
2

0.
3

t

0.751 0.756 0.758 0.758

0.753 0.754 0.760 0.757

0.749 0.751 0.755 0.752

0.747 0.748 0.748 0.749
0.71

0.72

0.73

0.74

0.75

0.76

(a) η = 0.0

0 1 100 10000

0.
0

0.
1

0.
2

0.
3

t

0.732 0.732 0.738 0.738

0.750 0.750 0.746 0.746

0.749 0.750 0.748 0.747

0.747 0.746 0.746 0.745
0.71

0.72

0.73

0.74

0.75

0.76

(b) η = 0.3

0 1 100 10000

0.
0

0.
1

0.
2

0.
3

t

0.717 0.718 0.726 0.726

0.737 0.737 0.732 0.732

0.740 0.739 0.736 0.736

0.738 0.740 0.737 0.738
0.71

0.72

0.73

0.74

0.75

0.76

(c) η = 0.6

Figure 4: Performance with different hyper parameters across different coupling levels. A darker
color indicates a better nDCG@10 performance.

which verifies our discussion. Besides, the focal point gradually shifts from the upper right corner
to the lower-left corner as an increase. This shows again that Lipschitz Decoupling takes a better
effect on a low Lipschitz observation dataset, while Bernoulli Decoupling performs better on a large
Lipschitz observation dataset.

7 Conclusion

In this work, we take the first step to studying the coupling effect in individual-level ULTR. We
propose two goals: hard decoupling, where the true relevance probability should be estimated ac-
curately, and soft decoupling, where the correct relevance order can be recovered. We modify the
observation model to achieve soft decoupling when the click probability estimation is unbiased.
We propose two special observation models, Lipschitz Observation Model (LOM) and Bernoulli
Observation Model (BOM). We provide a theoretical guarantee that when their hyperparameters
are bounded, soft decoupling can be achieved by these methods. We conduct comprehensive ex-
periments on two LTR benchmark datasets, which shows that the proposed LBD outperforms the
baseline methods and verifies its effectiveness in debiasing data.

Limitations. (1) For simplicity, our theoretical results are based on Assumption 1, which requires
the models to fit clicks perfectly. It would be interesting to investigate how the decoupling effect
will be affected if the click estimation is not so accurate. (2) Our bounds in the theorems contain a
value α from Assumption 2 which is related to the real data generating process. In some cases such
as sparse, high dimensional, or high noise cases, the value of alpha may be too large and invalidate
the derived bounds. How to decouple data in these cases is an open question.

Societal Impact

To the best of our knowledge, the approaches in this paper raise no major ethical concerns or societal
consequences. Researchers and practitioners from the ULTR domain may benefit from our research
since debiasing implicit feedback is a significant challenge in real-world applications. The worst
possible outcome when the proposed approach fails is that it reduces to the standard position-based
observation estimation and stops making the desired impact. Finally, the proposed approach aims at
solving the coupling effects of the data, the extent of which depends on the properties of the data.

Acknowledgments

Thanks to Yusu Hong for the discussion on the theorems, and the reviewers for their valuable com-
ments and suggestions.

References
[1] Aman Agarwal, Kenta Takatsu, Ivan Zaitsev, and Thorsten Joachims. 2019. A general frame-

work for counterfactual learning-to-rank. In Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval. 5–14.

10

[2] Aman Agarwal, Xuanhui Wang, Cheng Li, Michael Bendersky, and Marc Najork. 2019. Ad-
dressing trust bias for unbiased learning-to-rank. In The World Wide Web Conference. 4–14.

[3] Aman Agarwal, Ivan Zaitsev, Xuanhui Wang, Cheng Li, Marc Najork, and Thorsten Joachims.
2019. Estimating position bias without intrusive interventions. In Proceedings of the Twelfth
ACM International Conference on Web Search and Data Mining. 474–482.

[4] Qingyao Ai, Keping Bi, Cheng Luo, Jiafeng Guo, and W Bruce Croft. 2018. Unbiased learning
to rank with unbiased propensity estimation. In The 41st International ACM SIGIR Conference
on Research & Development in Information Retrieval. 385–394.

[5] Qingyao Ai, Jiaxin Mao, Yiqun Liu, and W. Bruce Croft. 2018. Unbiased Learning to Rank:
Theory and Practice. In Proceedings of the 27th ACM International Conference on Information
and Knowledge Management (Torino, Italy) (CIKM ’18). ACM, New York, NY, USA, 2305–
2306. https://doi.org/10.1145/3269206.3274274

[6] Qingyao Ai, Tao Yang, Huazheng Wang, and Jiaxin Mao. 2021. Unbiased Learning to Rank:
Online or Offline? ACM Transactions on Information Systems (TOIS) 39, 2 (2021), 1–29.

[7] Judit Bar-Ilan, Kevin Keenoy, Mark Levene, and Eti Yaari. 2009. Presentation bias is signifi-
cant in determining user preference for search results—A user study. Journal of the American
Society for Information Science and Technology 60, 1 (2009), 135–149.

[8] Alexey Borisov, Ilya Markov, Maarten De Rijke, and Pavel Serdyukov. 2016. A neural click
model for web search. In Proceedings of the 25th International Conference on World Wide
Web. 531–541.

[9] Alexey Borisov, Martijn Wardenaar, Ilya Markov, and Maarten de Rijke. 2018. A click se-
quence model for web search. In The 41st International ACM SIGIR Conference on Research
& Development in Information Retrieval. 45–54.

[10] Georg Buscher, Susan T Dumais, and Edward Cutrell. 2010. The good, the bad, and the
random: an eye-tracking study of ad quality in web search. In Proceedings of the 33rd interna-
tional ACM SIGIR conference on Research and development in information retrieval. 42–49.

[11] Hui Cai, Chengyu Wang, and Xiaofeng He. 2020. Debiasing Learning to Rank Models with
Generative Adversarial Networks. In Asia-Pacific Web (APWeb) and Web-Age Information
Management (WAIM) Joint International Conference on Web and Big Data. Springer, 45–60.

[12] Olivier Chapelle and Yi Chang. 2011. Yahoo! learning to rank challenge overview. In Pro-
ceedings of the learning to rank challenge. PMLR, 1–24.

[13] Olivier Chapelle, Donald Metlzer, Ya Zhang, and Pierre Grinspan. 2009. Expected reciprocal
rank for graded relevance. In Proceedings of the 18th ACM conference on Information and
knowledge management. 621–630.

[14] Mouxiang Chen, Chenghao Liu, Zemin Liu, and Jianling Sun. 2022. Scalar is Not Enough:
Vectorization-Based Unbiased Learning to Rank. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’22). 136–145.

[15] Mouxiang Chen, Chenghao Liu, Jianling Sun, and Steven CH Hoi. 2021. Adapting Interac-
tional Observation Embedding for Counterfactual Learning to Rank. In Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Information Retrieval.
285–294.

[16] Georges E Dupret and Benjamin Piwowarski. 2008. A user browsing model to predict search
engine click data from past observations.. In Proceedings of the 31st annual international ACM
SIGIR conference on Research and development in information retrieval. 331–338.

[17] Zhichong Fang, Aman Agarwal, and Thorsten Joachims. 2019. Intervention harvesting for
context-dependent examination-bias estimation. In Proceedings of the 42nd International ACM
SIGIR Conference on Research and Development in Information Retrieval. 825–834.

[18] Pierre Geurts, Damien Ernst, and Louis Wehenkel. 2006. Extremely randomized trees. Ma-
chine learning 63, 1 (2006), 3–42.

[19] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville.
2017. Improved training of wasserstein GANs. In Proceedings of the 31st International Con-
ference on Neural Information Processing Systems. 5769–5779.

11

https://doi.org/10.1145/3269206.3274274

[20] Fan Guo, Chao Liu, Anitha Kannan, Tom Minka, Michael Taylor, Yi-Min Wang, and Christos
Faloutsos. 2009. Click chain model in web search. In Proceedings of the 18th international
conference on World wide web. 11–20.

[21] Fan Guo, Chao Liu, and Yi Min Wang. 2009. Efficient multiple-click models in web search.
In Proceedings of the second acm international conference on web search and data mining.
124–131.

[22] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feedforward net-
works are universal approximators. Neural networks 2, 5 (1989), 359–366.

[23] Ziniu Hu, Yang Wang, Qu Peng, and Hang Li. 2019. Unbiased LambdaMART: An unbiased
pairwise learning-to-rank algorithm. In The World Wide Web Conference. 2830–2836.

[24] Samuel Ieong, Nina Mishra, Eldar Sadikov, and Li Zhang. 2012. Domain bias in web search.
In Proceedings of the fifth ACM international conference on Web search and data mining.
413–422.

[25] Jiarui Jin, Yuchen Fang, Weinan Zhang, Kan Ren, Guorui Zhou, Jian Xu, Yong Yu, Jun Wang,
Xiaoqiang Zhu, and Kun Gai. 2020. A deep recurrent survival model for unbiased ranking. In
Proceedings of the 43rd International ACM SIGIR Conference on Research and Development
in Information Retrieval. 29–38.

[26] Thorsten Joachims. 2006. Training linear SVMs in linear time. In Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and data mining. 217–226.

[27] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri Gay. 2005. Accu-
rately interpreting clickthrough data as implicit feedback. In Proceedings of the 28th annual
international ACM SIGIR conference on Research and development in information retrieval.
154–161.

[28] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, Filip Radlinski, and Geri
Gay. 2007. Evaluating the accuracy of implicit feedback from clicks and query reformulations
in web search. ACM Transactions on Information Systems (TOIS) 25, 2 (2007), 7–es.

[29] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased learning-to-
rank with biased feedback. In Proceedings of the Tenth ACM International Conference on Web
Search and Data Mining. 781–789.

[30] Jae-woong Lee, Young-In Song, Deokmin Haam, Sanghoon Lee, Woo-sik Choi, and Jongwuk
Lee. 2020. Bridging the Gap between Click and Relevance for Learning-to-Rank with Mini-
mal Supervision. In Proceedings of the 29th ACM International Conference on Information &
Knowledge Management. 2109–2112.

[31] Yiqun Liu, Chao Wang, Ke Zhou, Jianyun Nie, Min Zhang, and Shaoping Ma. 2014. From
skimming to reading: A two-stage examination model for web search. In Proceedings of the
23rd ACM International Conference on Conference on Information and Knowledge Manage-
ment. 849–858.

[32] Zeyang Liu, Yiqun Liu, Ke Zhou, Min Zhang, and Shaoping Ma. 2015. Influence of verti-
cal result in web search examination. In Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 193–202.

[33] Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, Fabrizio Sil-
vestri, and Salvatore Trani. 2016. Post-learning optimization of tree ensembles for efficient
ranking. In Proceedings of the 39th International ACM SIGIR conference on Research and
Development in Information Retrieval. 949–952.

[34] Harrie Oosterhuis and Maarten de Rijke. 2020. Policy-aware unbiased learning to rank for
top-k rankings. In Proceedings of the 43rd International ACM SIGIR Conference on Research
and Development in Information Retrieval. 489–498.

[35] Zohreh Ovaisi, Ragib Ahsan, Yifan Zhang, Kathryn Vasilaky, and Elena Zheleva. 2020. Cor-
recting for selection bias in learning-to-rank systems. In Proceedings of The Web Conference
2020. 1863–1873.

[36] Zohreh Ovaisi, Kathryn Vasilaky, and Elena Zheleva. 2021. Propensity-Independent Bias Re-
covery in Offline Learning-to-Rank Systems. (2021).

12

[37] Yingcheng Sun, Richard Kolacinski, and Kenneth Loparo. 2020. Eliminating search intent
bias in learning to rank. In 2020 IEEE 14th International Conference on Semantic Computing
(ICSC). IEEE, 108–115.

[38] Joachims Thorsten, Granka Laura, Pan Bing, Hembrooke Helene, and Gay Geri. 2005. Accu-
rately Interpreting Clickthrough Data as Implicit. In Proceedings of the 28th annual interna-
tional ACM SIGIR conference. 154–161.

[39] Mucun Tian, Chun Guo, Vito Ostuni, and Zhen Zhu. 2020. Counterfactual Learning to Rank
using Heterogeneous Treatment Effect Estimation. arXiv preprint arXiv:2007.09798 (2020).

[40] Ali Vardasbi, Maarten de Rijke, and Ilya Markov. 2020. Cascade Model-based Propensity
Estimation for Counterfactual Learning to Rank. Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in Information Retrieval (Jul 2020). https:
//doi.org/10.1145/3397271.3401299

[41] Ali Vardasbi, Harrie Oosterhuis, and Maarten de Rijke. 2020. When Inverse Propensity Scoring
does not Work: Affine Corrections for Unbiased Learning to Rank. In Proceedings of the 29th
ACM International Conference on Information & Knowledge Management. 1475–1484.

[42] Xuanhui Wang, Michael Bendersky, Donald Metzler, and Marc Najork. 2016. Learning to
rank with selection bias in personal search. In Proceedings of the 39th International ACM
SIGIR conference on Research and Development in Information Retrieval. 115–124.

[43] Xuanhui Wang, Nadav Golbandi, Michael Bendersky, Donald Metzler, and Marc Najork. 2018.
Position bias estimation for unbiased learning to rank in personal search. In Proceedings of the
Eleventh ACM International Conference on Web Search and Data Mining. 610–618.

[44] Kyle Williams, Julia Kiseleva, Aidan C Crook, Imed Zitouni, Ahmed Hassan Awadallah, and
Madian Khabsa. 2016. Detecting good abandonment in mobile search. In Proceedings of the
25th International Conference on World Wide Web. 495–505.

[45] Yisong Yue, Rajan Patel, and Hein Roehrig. 2010. Beyond position bias: Examining result
attractiveness as a source of presentation bias in clickthrough data. In Proceedings of the 19th
international conference on World wide web. 1011–1018.

[46] Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn Andrews, Aditee
Kumthekar, Maheswaran Sathiamoorthy, Xinyang Yi, and Ed Chi. 2019. Recommending what
video to watch next: a multitask ranking system. In Proceedings of the 13th ACM Conference
on Recommender Systems. 43–51.

[47] Yukun Zheng, Jiaxin Mao, Yiqun Liu, Cheng Luo, Min Zhang, and Shaoping Ma. 2019. Con-
structing click model for mobile search with viewport time. ACM Transactions on Information
Systems (TOIS) 37, 4 (2019), 1–34.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

13

https://doi.org/10.1145/3397271.3401299
https://doi.org/10.1145/3397271.3401299

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [No] This work is not resource-
intensive.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

Appendix

A Extended Related Work

There are two groups of approaches to debias click data for ranking. The first is to model user’s
behavior to infer relevance from biased click signals, known as click models [16, 21, 20, 9, 8]. How-
ever, most click models focus on predicting clicks, rather than optimizing the ranking performance
[29, 4]. They are usually separated from the LTR frameworks, and the relevance inference is an af-
terthought [4]. The second group tries to directly learn unbiased ranking models from biased clicks,
known as unbiased learning to rank (ULTR). Joachims et al. [29] proposed the inverse propensity
scoring (IPS) method to reweigh the click signals based on the reciprocal of observation proba-
bilities (called propensity scores) and provide an unbiased estimate of the ranking objective. The
propensity scores are estimated by randomized experiments [29, 42], which hurt users’ experience,
unfortunately. To address it, Agarwal et al. [3] and Fang et al. [17] proposed to do intervention
harvest by exploiting click logs with multiple ranking models. Nevertheless, they have a relatively
narrow scope of application due to the strict assumption to construct interventional sets. Recently,
some researchers proposed to jointly estimate relevance and bias [43, 4, 23, 25, 14]. Similar to
them, our proposed method could jointly train the ranking model and observation model without
intervention.

On the other side, researchers developed models to deal with all kinds of click bias, based on ULTR
framework. According to types of bias, they can be divided into several categories: (1) position bias,
where the bias only depends on position [43, 4, 23, 11, 14]; (2) selection bias, where some documents
have a zero probability of being observed since it is ranked below a certain cutoff [34, 35, 36];
(3) trust bias, where users are more likely to click incorrectly on higher-ranked items [2, 41]; (4)
contextual bias, where the observation bias varies from query to query [17, 39]; (5) interactional bias,
where the observation is influenced by interactions among clicks in the same ranking list [15, 40].
However, these types of work mainly model the observation bias at a group level and ignore the
characteristics of each document.

B Proofs of the Theorems

B.1 Proof of Theorem 1

Let σp(x) =
ôp(x)
op(x)

, for each p ∈ [n] we have:

β ≥ ||∇x (ôp(x))||
= ||∇x (σp(x)op(x))||
= ||op(x)∇x (σp(x)) + σp(x)∇x (op(x))||
≥ ||op(x)∇x (σp(x))|| − ||σp(x)∇x (op(x))||.

This implies the following bounds:

||∇x (σp(x))|| ≤
β + ||σp(x)∇x (op(x))||

op(x)
≤ β + ασp(x)

op(x)
.

Now by using the condition in Theorem 1, we obtain:

15

σp(x1)

σp(x2)
= 1 +

1

σp(x2)
(σp(x1)− σp(x2))

= 1 +
1

σp(x2)

∫ x1

x2

∇(σp(x)) · dx

≤ 1 +
1

σp(x2)

{
inf

γ∈Γ(x1,x2)

∫
γ

||∇(σp(x))||||dx||
}

≤ 1 +
1

σp(x2)

{
inf

γ∈Γ(x1,x2)

∫
γ

β + ασp(x)

op(x)
||dx||

}
≤ 1 +

1

σp(x2)

ôp(x2)

op(x2)

(
r(x1)

r(x2)
− 1

)
= 1 +

(
r(x1)

r(x2)
− 1

)
=

r(x1)

r(x2)
.

In the above deviation, the second inequality uses the upper bound of ||∇x (σp(x))||, and the third
inequality uses the condition in Theorem 1.

Now by using Assumption 1, we have:

r̂(x1) =
r(x1)op(x1)

ôp(x1)
=

r(x1)

σp(x1)
≥ r(x2)

σp(x2)
=

r(x2)op(x2)

ôp(x2)
= r̂(x2),

where the inequality uses the above conclusion, and the first and the last equality uses Assumption
1. This implies the desired bound.

B.2 Proof of Theorem 2

Given that this model is a β-LOM, by using Assumption 1 we have

β ≥ |ôp(x1)− ôp(x2)|
||x1 − x2||

=

∣∣∣ cp(x1)
r̂(x1)

− cp(x2)
r̂(x2)

∣∣∣
||x1 − x2||

,∀p ∈ [n],

where cp(x) = op(x)r(x). Now by taking the lower bound on the right side over p, we obtain:

∃r̂(x1), r̂(x2) ∈ [0, 1], s.t.,

β ≥ sup
p

∣∣∣ cp(x1)
r̂(x1)

− cp(x2)
r̂(x2)

∣∣∣
||x1 − x2||

=

∣∣∣∣∣∣ c(x1)
r̂(x1)

− c(x2)
r̂(x2)

∣∣∣∣∣∣
∞

||x1 − x2||
.

By taking m = 1
r̂(x1)

and n = 1
r̂(x1)

, we can obtain the desired result.

B.3 Proof of Theorem 3

From the condition, we have:

t ≥ inf
p

r(x1)

r(x2)

(
1 +

α||x1 − x2||
op(x2)

)
≥ inf

p

r(x1)

r(x2)

(
1 +

|op(x2)− op(x1)|
op(x2)

)
≥ inf

p

r(x1)op(x1)

r(x2)op(x2)
(4)

Let ô′p(x; t) denote the estimation of a t-BOM. From the definition, we have:

ô′p(x; t) = E [1 + (ôp(x)− 1) γ] = t+ (1− t)ôp(x),∀p ∈ [n]

16

Note that 0 ≤ ôp(x) ≤ 1, we obtain t ≤ ô′p(x; t) ≤ 1. By using Assumption 1, we have

r(x)op(x) ≤ r̂(x) ≤ min

{
1

t
r(x)op(x), 1

}
. (5)

This shows that t can reduce the upper bound of r̂(x). Therefore, we obtain:

∃p ∈ [n], s.t., r̂(x1) ≤
1

t
r(x1)op(x1) ≤ r(x2)op(x2) ≤ r̂(x2),

where the first and the last inequality uses the Eq.(5), and the second inequality uses the Eq.(4).

B.4 Proof of Theorem 4

From Eq.(5), we obtain:

r̂(x) ≥ sup
p∈[n]

{r(x)op(x)} = r(x) sup
p∈[n]

op(x),

r̂(x) ≤ inf
p∈[n]

{1
t
r(x)op(x)} =

1

t
r(x) inf

p∈[n]
op(x).

Therefore we have: r(x) sup
p∈[n]

op(x) ≤ 1
t r(x) inf

p∈[n]
op(x), which implies the desired bound.

C Experiments

C.1 Further details of datasets

Table 2 shows the characteristics of the two datasets we used, Yahoo! and Istella-S.

Table 2: Dataset statistics

Yahoo! Istella-S

queries 28,719 32,968
documents 700,153 3,406,167
features 700 220
relevance levels 5 5

C.2 Training details

Table 3: Final hyper-parameters used for LBD in all ex-
periment settings

Experiment setting Final hyperparameter
Dataset Ranker η λ t

Yahoo! DNN

0 100 0.1
0.1 100 0.1
0.2 100 0.1
0.3 1 0.1
0.4 1 0.3
0.5 1 0.3
0.6 1 0.4

Linear 0.1 10000 0.1

Istella-S DNN 0.1 100 0.1
Linear 0.1 100 0.4

We combined the baselines with the
same ranking models: DNN and Lin-
ear, where the implementation and hy-
perparameters are the same as ULTRA
framework [5, 6]. To make fair com-
parisons, all the baselines and our mod-
els shared the same number of the hid-
den layer. The only difference between
our model and baselines was the out-
put dimensions. We trained these meth-
ods with a batch size of 256. We used
SGD to train the Linear Ranker, and
AdaGrad to train the DNN Ranker. For
LBD, we selected the hyper-parameter
λ from {1, 100, 10000} and t from
{0.1, 0.2, 0.3, 0.4}. For convenience,
we expanded the output dimension of
the ranking model, and separate them into the ranking model (with 2 outputs representing the mean
and the variance) and observation models (with 2n outputs representing each observation distribu-
tion on each positions) as our implementation, since they have the same input data.

17

We used nDCG@k (k = 1, 3, 5, 10) and ARP as the performance metrics. Each model was trained
for 10,000 epochs, and we adopted the hyperparameters with the best results based on nDCG@10
tested on the validation set. We run each experiment 5 times and reported the average results testing
on the test set. Final hyper-parameters used in all experiment settings are listed in Table 3, and the
full experimental results are listed in Table 4.

Table 4: Comparison of different methods on two datasets (η = 0.1). Significant performance
improvement/degradation compared to the best baseline (marked in bold) by t-test is denoted as +/-
(p-value < 0.05) or ++/-- (p-value < 0.005).

Yahoo!

Ranker Method ARP nDCG@k
k = 1 k = 3 k = 5 k = 10

DNN

Labeled Data 3.536 0.692 0.696 0.716 0.764
DLA 3.579 0.679 0.686 0.708 0.755

Vectorization 3.593 0.674 0.681 0.704 0.751
PairDebias 3.620 0.654 0.663 0.688 0.739

RegressionEM 3.627 0.669 0.676 0.697 0.746
Click Data 3.616 0.657 0.665 0.690 0.741
Unlimited 3.585 0.671− 0.680− 0.703− 0.752−

LBDLips 3.572 0.680 0.689+ 0.710+ 0.757++

LBDBer 3.576 0.676 0.684 0.706− 0.754
LBD 3.563+ 0.683+ 0.690++ 0.712++ 0.758++

Linear

Labeled Data 3.603 0.671 0.676 0.698 0.747
DLA 3.623 0.660 0.666 0.690 0.741

Vectorization 3.633 0.663 0.667 0.690 0.741
PairDebias 3.631 0.653 0.662 0.686 0.738

RegressionEM 3.695 0.627 0.639 0.666 0.720
Click Data 3.629 0.650 0.661 0.686 0.737
Unlimited 3.710−− 0.630−− 0.640−− 0.665−− 0.719−−

LBDLips 3.623+ 0.669+ 0.672++ 0.695++ 0.744++

LBDBer 3.623+ 0.662 0.668 0.691 0.742
LBD 3.616++ 0.671+ 0.674++ 0.696++ 0.746++

Istella-S

Ranker Method ARP nDCG@k
k = 1 k = 3 k = 5 k = 10

DNN

Labeled Data 1.386 0.671 0.689 0.666 0.729
DLA 1.551 0.642 0.613 0.637 0.696

Vectorization 1.573 0.637 0.609 0.632 0.691
PairDebias 1.496 0.618 0.596 0.624 0.691

RegressionEM 2.064 0.592 0.556 0.573 0.623
Click Data 1.475 0.636 0.610 0.636 0.701
Unlimited 1.611−− 0.635 0.606 0.630 0.687−−

LBDLips 1.631−− 0.640− 0.610 0.631− 0.686−−

LBDBer 1.464+ 0.645++ 0.618++ 0.643++ 0.707++

LBD 1.469 0.651++ 0.623++ 0.648++ 0.709++

Linear

Labeled Data 1.560 0.629 0.602 0.627 0.689
DLA 1.687 0.612 0.584 0.609 0.667

Vectorization 1.637 0.611 0.587 0.612 0.672
PairDebias 1.554 0.604 0.582 0.613 0.678

RegressionEM 2.214 0.552 0.522 0.542 0.594
Click Data 1.564 0.610 0.588 0.616 0.680
Unlimited 2.121− 0.542 0.514− 0.536− 0.592−

LBDLips 1.761−− 0.619+ 0.583− 0.605−− 0.659−−

LBDBer 1.586−− 0.613+ 0.590 0.617 0.679
LBD 1.581−− 0.616++ 0.591++ 0.618++ 0.680

18

	Introduction
	Related Work
	Preliminaries
	Our method
	Coupling Effect
	Lipschitz Decoupling
	Bernoulli Decoupling

	Model Implementation
	Experiments
	Experimental Setup
	Performance on different rankers and datasets
	Performance on different coupling levels
	Hyper Parameter Analysis

	Conclusion
	Extended Related Work
	Proofs of the Theorems
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Experiments
	Further details of datasets
	Training details

