
Adapting Interactional Observation Embedding for
Counterfactual Learning to Rank

Mouxiang Chen1,3∗, Chenghao Liu2∗, Jianling Sun1,3, Steven C.H. Hoi2
1Zhejiang University, 2Salesforce Research Asia,

3Alibaba-Zhejiang University Joint Institute of Frontier Technologies
{chenmx,sunjl}@zju.edu.cn,{chenghao.liu,shoi}@salesforce.com

ABSTRACT
Counterfactual Learning to Rank (CLTR) becomes an attractive
research topic due to its capability of training ranker with click
logs. However, CLTR inherently suffers from a large amount of bias
caused by confounders, variables that affect both the observation
(examination) behavior and click behavior. Recent efforts to correct
bias mostly focus on position bias, which assumes that each obser-
vation in a ranking list is isolated and only depends on the position.
Though effective, users often engage with documents in an interac-
tive manner. Ignoring the interactions between observations/clicks
would incur a large interactional observation bias no matter how
much data is collected.

In this work, we leverage the embedding method to develop
an Interactional Observation-Based Model (IOBM) to estimate the
observation probability. We argue that while there exist complex
observed and unobserved confounders for observation/click interac-
tions, it is sufficient to use the embedding as a proxy confounder to
uncover the relevant information for the prediction of the observa-
tion propensity. Moreover, the embedding could offer an alternative
to the fully specified generative model for observation and decou-
ples the complex interaction structure of observations/clicks. In
our IOBM, we first learn the individual observation embedding to
capture position and click information. Then, we learn the inter-
actional observation embedding to uncover their local interaction
structure. To filter out irrelevant information and reduce contex-
tual bias, we utilize query context information and propose the
intra-observation attention and the inter-observation attention,
respectively. We conduct extensive experiments on two LTR bench-
mark datasets, demonstrating that the proposed IOBM consistently
achieves better performance over the baseline models in various
click situations and verifying its effectiveness of eliminating inter-
actional observation bias.
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1 INTRODUCTION
Learning to Rank (LTR) with implicit feedback from user behavior
(e.g. click, dwell time) has attracted increased research interest with
the introduction of counterfactual inference approaches [1, 29].
Using logged feedback for LTR is attractive not only because they
are cheap and relatively easy to acquire at scale [27] but also because
relevance annotations from experts are impractical, unethical, or
impossible in some domains [23]. On the other hand, learning from
implicit feedback inherently contains a large amount of bias from
user behavior and the ranker used during logging. Simply ignoring
it and treating the click as a relevance signal would result in sub-
optimal performance [28, 45].

Recently, there has been remarkable progress in using Counter-
factual Learning to Rank (CLTR) to remove bias. The key idea is
to model the probability of a user observing an item in a displayed
ranking. By reweighting the clicked documents based on the re-
ciprocal of their observation propensities, the inverse propensity
score (IPS) method could provide a principled approach to an unbi-
ased estimate of the ranking objective. Most of the existing works
have focused on position bias [27], in which users tend to observe
documents at the top of rankings and, consequently documents
displayed at the top position have a high chance to be clicked.
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Figure 1: An illustrative example of interactional observa-
tion bias.

Algorithms that correct for position bias typically assume that
observation is isolated in a ranking list and only depends on the
position, which is the confounder that affects both observation
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and click events. While simplifying assumptions may widen its
applicability, it ignores the fact that there are interactions between
observations/clicks, which is another type of confounder and play
a critical role in CTLR. To illustrate this problem in a more intuitive
way, we present an example in Figure 1. Here, we aim to estimate the
user observation probability at position 𝑝 + 1, once the observation
and click events at position 𝑝 end. It is obvious that observation
probability is quite different when we adopt different decisions at
position 𝑝 because of the dependencies between observations/clicks.
In some domains, these dependencies would dominate the click
decision since they reflect user’s current tendency to continue
browsing. If we simply assume that each observation is isolated
from other observation and click behaviors, it will incur a large
interactional observation bias no matter howmuch data is collected.

Unfortunately, it is rather challenging to model the interactional
observation mechanism, although it naturally helps estimate ob-
servation probability. First, the model space of a full interaction
structure of observations/clicks would increase combinatorially and
then incur a large variance in the training process. While defining
the interaction structure in prior could reduce model space, it faces
the risk of building a misspecified model. Second, the data repre-
senting observation behavior is not accessible from user’s implicit
feedback (unobserved confounder), which impedes observation
propensity estimation from training data.

To tackle these issues, in this work, we leverage the embedding
method and propose an Interactional Observation-Based Model
(IOBM) to estimate the observation probability. We argue that while
there exist complex observed and unobserved confounders, it is
sufficient to exploit the embedding as a substitute (observed) con-
founder to uncover the information relevant for the prediction of
the observation propensity. Meanwhile, the embedding method
offers an alternative to the fully specified generative model w.r.t.
observation and decouples the complex interaction structure of ob-
servations/clicks. Specifically, we first learn the individual observa-
tion embedding to capture the click and position information from
specific user observation events. Then we learn the interactional
observation embedding which uncovers the hidden relationship
among observations. To filter out irrelevant noises and reduce con-
textual bias, the intra-observation attention and inter-observation
attention are further applied based on query context information.
The proposed IOBM is a plug-and-play model, which can be seam-
lessly integrated into any IPS-based CLTR frameworks. We con-
duct comprehensive empirical evaluations on two LTR benchmark
datasets, which shows that the proposed IOBM consistently outper-
forms the baseline methods in various click situations and verifies
its effectiveness of eliminating interactional observation bias.

2 INTERACTIONAL OBSERVATION-BASED
MODEL (IOBM)

2.1 Problem Formulation
Given a set of queries𝑄 , where each query 𝑞 is sampled from a data
generating distribution, a ranking system 𝑅 generates a ranking list
of documents 𝜋𝑞 retrieved for each query𝑞, sorted by their predicted
relevance score. The goal of learning to rank is to optimize 𝑆 by
minimizing the empirical risk R:

R(𝑄, 𝑆) = 1
|𝑄 |

∑
𝑞∈𝑄

Δ(𝜋𝑞 | 𝑞),

where Δ(𝜋𝑞 | 𝑞) is a loss for a single query. Assuming that we
already know the true relevance 𝑟𝑞𝑝 for query-document pair (𝑞, 𝑑)
in position 𝑝 (full information setting), it commonly takes the form
of:

Δfull-info (𝜋𝑞 | 𝑞) =
∑

𝑝∈{1,..., |𝜋𝑞 | }
𝛿
(
𝜋𝑞 [𝑝] | 𝜋𝑞

)
· 𝑟𝑞𝑝 ,

where 𝛿 (𝑑 | 𝜋𝑞) can be any specific metric of interest for 𝑑 in the
ranking list 𝜋𝑞 . The relevance score 𝑟

𝑞
𝑝 denotes how relevant a

document 𝑑 locating at 𝑝 related to a query 𝑞, which is typically
obtained by human annotaion. However, they are expensive and
even impossible to obtain, especially in a large massive dataset.

In contrast, the click logs from users are an attractive proxy of
relevance signals, which are cheap and timely to collect at scale.
Nevertheless, unlike the full-info setting, 𝑟𝑞𝑝 is unknown in this
partial information setting and click signal 𝑐𝑞𝑝 in position 𝑝 is usu-
ally biased [39], which could not reflect the real relevance value
exactly. For example, higher-ranked documents are more likely to
be observed and clicked (known as position bias).

To address this problem, researchers proposed to use the exami-
nation hypothesis to model user’s click behavior, which assumes
that in a certain position 𝑝 , clicks (𝑐𝑞𝑝 = 1) appearing on the relevant
results (𝑟𝑞𝑝 = 1) should also be examined (𝑜𝑞𝑝 = 1):

Pr(𝑐𝑞𝑝 = 1 | 𝑞, 𝑝) = Pr(𝑜𝑞𝑝 = 1 | 𝑞, 𝑝) · Pr(𝑟𝑞𝑝 = 1 | 𝑞, 𝑝, 𝑜𝑞𝑝 = 1) . (1)

Obviously, click signals are biased towards observation probabil-
ity Pr(𝑜𝑞𝑝 = 1 | 𝑞, 𝑝). Therefore, [29] proposed to eliminate the bias
via the inverse propensity scoring (IPS) method:

ΔIPS (𝜋𝑞 | 𝑞) =
∑

𝑝∈{1,..., |𝜋𝑞 | }

𝛿
(
𝜋𝑞 [𝑝] | 𝜋𝑞

)
· 𝑐𝑞𝑝

Pr(𝑜𝑞𝑝 = 1 | 𝑞, 𝑝)
.

[1, 29] proved that ΔIPS (𝜋𝑞 | 𝑞) is an unbiased estimate of
Δfull-info (𝜋𝑞 | 𝑞). It implies that the crux of IPS methods is a well-
specified observation probability.

2.2 Causal View for IPS-Based Models
From a causal view, the spirit of counterfactual learning to rank
is to answer an intervention question − for each query, would the
document be clicked if we “forced” the user to observe it? Here,
user’s observation behavior at a specific position is a “treatment”
and his click behavior is an “outcome”. The problem is that there are
observed and unobserved confounders, variables that affect both
observation behavior and click behavior, which leads to spurious
effects induced by an imbalance of the confounder distributions
among different treatments. Thus, the success of causal predictions
with observational data depends on whether we have properly
accounted for all confounders [37]. In this way, the observation
behavior is identifiable from click data, i.e. we can not modify the
conditional distribution characterized by the observation behavior
without disturbing the click data distribution.



2.2.1 Position-Based Model (PBM). In order to simplify the gener-
ative model of observation behavior and widen the applicability of
IPS-methods to larger slates [32], [29] assumes that the observation
probability depends only on position 𝑝 , but not on 𝑞 or 𝜋𝑞 , which
is formulated as:

Pr(𝑜𝑞𝑝 = 1 | 𝑞, 𝜋𝑞, 𝑝) = Pr(𝑜𝑝 = 1 | 𝑝).
Such a model factors out 𝑞 and 𝜋𝑞 , and makes the estimation of

observation probability simpler. Most of the existing works [4, 22,
44] follow this assumption of PBM since it has a sufficiently low
variance due to its small extra parameter space. However, when
there exist other confounders except for position, like 𝑞 and 𝜋𝑞 ,
the causal effect cannot be identified. For example, each query
shares the same propensity score w.r.t. position, regardless of the
uniqueness of each query context. As a consequence, the estimator
is biased for the misspecified propensities of the PBM no matter
how much data is collected. In section 4.2, We empirically found
that under some circumstances, PBM-based CLTR performs even
worse than that without using any debiasing methods.

2.2.2 Contextual Position-Based Model (CPBM). To attain a better
specified generative model for observation behavior, CPBM [16]
takes one step further by assuming that the observation probability
is determined not only by position 𝑝 but the handcrafted selected
query context features 𝑓 sel (𝒙𝑞). Here, 𝒙𝑞 signifies the original query
context features and 𝑓 sel (·) signifies a handcrafted feature selection
process. The query context features include the query itself and
features describing the query (e.g., query length), the candidate
set (e.g., size), and the user (e.g., age) [16]. Thus, the observation
probability of CPBM can be defined as:

Pr(𝑜𝑞𝑝 = 1 | 𝑞, 𝜋𝑞, 𝑝) = Pr(𝑜𝑞𝑝 = 1 | 𝑝, 𝑓 sel (𝒙𝑞)) .
Compared to PBM, CPBM introduces additional confounders to

reduce query contextual bias and is capable of handling the circum-
stance where observation bias varies from query to query. Note that,
instead of directly using the original query context features, CPBM
manually selects a small subset of features. This is because while
high-dimensional query context features may ameliorate the identi-
fiability issue, they may pose new challenge on accurate propensity
score estimation [7, 30].

2.3 Interactional Observation-Based Model
(IOBM)

While PBM [29] and CPBM [16] have proven effective, they do
not perform well particularly when there are interactions between
observations and clicks since they assume that each observation is
isolated from every other observation and click behaviors in the
ranking list. In some scenarios, these interactions dominate the click
decision. This is because a click (or an observation) action not only
serves as an indicator of how attractive the document is, but also
affects user’s current motivation for whether to continue browsing.
Therefore, we formulate observation probability at position 𝑝 as

Pr(𝑜𝑞𝑝 = 1 | 𝑝, 𝒙𝑞,𝑜1, . . . , 𝑜𝑝−1, 𝑜𝑝+1, . . . , 𝑜 |𝜋𝑞 |,
𝑐1, . . . , 𝑐𝑝−1, 𝑐𝑝+1, . . . , 𝑐 |𝜋𝑞 |) . (2)

The issue with directly estimating Eq. (2) is that the full network
structure among observations/clicks random variables will incur a

combinatorial explosion in the number of possible dependencies,
resulting in high variance with learning process and making it im-
practical. To address this problem, some existing works [32, 41] first
set the structure of the dependencies between observations/clicks
manually, and then learn patterns of the observation interaction
from the predefined set of rules. Nevertheless, a well-specified set
of dependency rules is not available in prior. Causal estimates based
on misspecified models are inherently suspect. Additionally, com-
pared to PBM and CPBM, Eq. (2) imposes unobserved confounders
𝑜1, . . . , 𝑜𝑝−1, 𝑜𝑝+1, . . . , 𝑜 |𝜋𝑞 | , which violates unconfoundedness as-
sumption [35] and impedes causal estimate.

To tackle these two issues, inspired by [31, 42], we leverage
observational data to find a proxy for the observed and unobserved
confounders. In particular, [42] claimed that it is not required to
recover all the information from confounders. Instead, it suffices
to recover only the part of confounders that are relevant for the
prediction of the propensity score. Therefore, if we can build a good
predictive model for the treatment then we can plug the outputs
into a causal effect estimate directly, without any demand to recover
the true confounders. To achieve this goal, we adopt the embedding
method to construct the proxy for confounders from observational
data. This is because the embedding method offers an alternative
to the fully specified generative model and decouples the complex
network structure of the dependencies among observations/clicks
random variables. Formally, the observation probability can be
defined as

Pr(𝑜𝑞𝑝 = 1 | Emb𝑜 (𝑝, 𝒙𝑞, 𝑐1, . . . , 𝑐𝑝−1, 𝑐𝑝+1, . . . , 𝑐 |𝜋𝑞 |)),

where Emb𝑜 (·) denotes the interactional observation embedding
function. Each embedding explains the query context and local
dependency structure of observation 𝑝 .

3 MODEL IMPLEMENTATION
Up to this point, we have shown that to effectively apply CLTR in
practice, we need to learn a low-dimensional interaction observa-
tion embedding that suffices for causal identification and enables
efficient propensity estimation from click data. In this section, we
first introduce the two key components of the proposed Interac-
tional Observation-Based Model (IOBM): (1) Individual Observa-
tion Embedding learning representation of each observation by
concatenating its click embedding and position embedding to cap-
ture the related information from specific user observation event,
and (2) Interactional Observation Embedding learning the hid-
den relationships among each observation. Then, we present the
optimization objective and training process of the proposed model.
The overall model architecture is illustrated in Figure 2. To simplify
writing, we omit the superscript 𝑞 of each variable when a query 𝑞
is given in the context of the paper.

3.1 Individual Observation Embedding
Given a displayed ranking list 𝜋𝑞 of a query 𝑞, each observation
𝑜 is linked to a position 𝑝 ∈ {1, 2, . . . , |𝜋𝑞 |} and a click 𝑐 ∈ {0, 1}.
Consider the inherent complexity of observation interaction, ex-
isting works [4, 22, 29] that represent both the click and position
as scalars may be insufficient for the task. To make them more
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Figure 2: Framework of the proposed IOBM

expressive, We first embed position 𝑝 and click 𝑐:
𝒗𝑝 = Emb𝑝 (𝑝), 𝒗𝑐 = Emb𝑐 (𝑐), (3)

where Emb𝑝 ∈ R |𝜋𝑞 |×𝑙𝑝 , Emb𝑐 ∈ R2×𝑙𝑐 . 𝑙𝑝 and 𝑙𝑐 denote the embed-
ding size of the position and click, respectively. Note that documents
placed at the top position have a high probability to be clicked. The
skewed distribution of click data render the learning of bottom
position scalars difficult. Thus, another benefit of using embedding
is that projecting the position and click into a common embedding
space could alleviate this problem by learning all positions in a
collaborative way.

We concatenate the two embeddings together to represent user’s
observation as [𝒗𝑝 ⊕ 𝒗𝑐 ]. While it can be used as user’s observation
embedding, it is oversimplified to tackle the scenario where the
observation bias varies from query to query [16]. A straightforward
solution is to incorporate query context features 𝒙𝑞 ∈ R𝑙𝑠 , where
𝑙𝑠 denotes the feature size, and formulate user’s observation as a
query-dependent function. Since the original query context con-
tains too much noisy and irrelevant information, [16] considered
to select important features in a handcrafted way. However, we
argue that the handcrafted features can not be naturally applied
to different scenarios. Instead, we implement the query context
features 𝒙𝑞 as the average of query and document features. Besides,
from the view of observation embedding, not all dimensions of the
observation embeddings are equally important in terms of different
query context. The importance of each feature should be dynamic
and dependent on the query context. Therefore, we apply an intra-
observation attention mechanism to filter out irrelevant noises
and alleviate the error propagation. Formally, the final observation
embedding 𝒗intra𝑜 can be formulated as:

𝒗intra𝑜 = 𝑓 att𝒙𝑞 ( [𝒗𝑝 ⊕ 𝒗𝑐 ];𝑊 intra, 𝑏intra), (4)

where the j-th axis value of the function 𝑓 att𝒙𝑞 (·) is defined as:

𝑓 att𝒙𝑞 (𝒙 ;𝑊 intra, 𝑏intra) ( 𝑗)

=
𝑙𝒙 · exp(tanh( 𝑗) (𝑊 intra [𝒙𝑞 ⊕ 𝑥] + 𝑏intra))∑𝑙𝒙
𝑖=1 exp(tanh(𝑖) (𝑊 intra [𝒙𝑞 ⊕ 𝑥] + 𝑏intra))

· 𝒙 ( 𝑗) , (5)

where 𝒙 ( 𝑗) denotes the j-th axis of the vector 𝒙 , 𝑙𝒙 denotes the size
of input vector 𝒙 ,𝑊 intra ∈ R(𝑙𝑝+𝑙𝑐 )×(𝑙𝑝+𝑙𝑐+𝑙𝑠 ) and 𝑏intra ∈ R(𝑙𝑝+𝑙𝑐 )
are learnable weights for the intra-observation attention. Note that
to align the scale of each dimension of output of 𝑓 att𝒙𝑞 (·) with that
of input, we multiple the attention score in left term in Eq. (5) by a
constant 𝑙𝒙 .

3.2 Interactional Observation Embedding
The intra-observation attention smooths over position and click
information as it compresses each observation into a single em-
bedding. However, each individual observation usually depends on
other observations in the displayed ranking list 𝜋𝑞 and their joint
effect [15, 19, 20]. Such interactions between observations can be
especially dominant when user’s attention is relatively limited to
the entire displayed ranking list 𝜋𝑞 . However, directly modeling
the full network structure between observations would incur a
combinatorially large number of potential dependencies. As such,
we propose to learn the interactional observation embedding from
training data, which allows us to capture more complex observation
interaction patterns than the handcrafted ones.

Specifically, we instantiate the learning of interactional obser-
vation embedding using the bidirectional LSTM (Bi-LSTM) model
[18]. This is because users may not obey the ranking order to view
documents. Documents locating at the lower position will still affect
ones locating at the higher position due to the users’ potential look-
ing back actions. The Bi-LSTM model consists of two components,
forward LSTM and backward LSTM. Forward LSTM goes over the
observation embeddings in the ranking list except the last posi-
tion in the top down order, i.e., 𝒗𝑜,1, 𝒗𝑜,2, ..., 𝒗𝑜, |𝜋𝑞 |−1, to produce



embeddings for the observation in the next position, i.e., 𝒂2, 𝒂3,
..., 𝒂 |𝜋𝑞 | . Backward LSTM goes over the observation embeddings
in the ranking list except the first position in the reverse order, i.e.,
𝒗𝑜, |𝜋𝑞 |, 𝒗𝑜, |𝜋𝑞 |−1, ..., 𝒗𝑜,2 and produce embeddings for the previous
observation, i.e., 𝒃 |𝜋𝑞 |−1, 𝒃 |𝜋𝑞 |−2, ..., 𝒃1. Since there is no precedent
and succeeding observation embedding to produce 𝒂1 and 𝒃𝑛 , re-
spectively, without loss of generality, we assign 𝒂1 = Forward(0),
and 𝒃𝑛 = Backward(0). Therefore, the interactional observation
embedding could be formulated as:

𝒂1, 𝒂2, . . . , 𝒂 |𝜋𝑞 | = Forward(0, 𝒗𝑜,1, 𝒗𝑜,2, . . . , 𝒗𝑜, |𝜋𝑞 |−1)
𝒃 |𝜋𝑞 |, 𝒃 |𝜋𝑞 |−1, . . . , 𝒃1 = Backward(0, 𝒗𝑜, |𝜋𝑞 |, 𝒗𝑜, |𝜋𝑞 |−1, . . . , 𝒗𝑜,2)

(6)
In this way, the predicted embedding 𝒂𝑝 (or 𝒃𝑝 ) could adaptively

capture complex patterns of all previous (or subsequent) observa-
tion interaction. Then, we concatenate the two embeddings 𝒂𝑝 and
𝒃𝑝 together to represent user’s interactional observation embed-
ding at position 𝑝 as [𝒂𝑝 ⊕ 𝒃𝑝 ]. Note that it do not contain any
information about 𝒗𝑜,𝑝 , so no click information will leak. On the
other side, since [𝒂𝑝 ⊕𝒃𝑝 ] contains all positions information except
position 𝑝 , which is a complementary of position 𝑝 and has the
same effect as extracting information from position 𝑝 directly.

Similarly, the patterns of observation interaction often vary from
query to query. The inversed order predicted embedding 𝒃𝑝 should
be mostly irrelevant when a user tend to examine the ranking list in
the top-down order. Besides, the importance of each feature should
be dynamic and dependent on the query context. Thus, we apply an
inter-observation attention mechanism to reduce the negative
effect of irrelevant information. Formally, the final interactional
observational embedding can be defined as:

𝒗inter𝑜,𝑝 = 𝑓 att𝒙𝑞 ( [𝒂𝑝 ⊕ 𝒃𝑝 ];𝑊 inter, 𝑏inter), (7)

where𝑊 inter ∈ R2𝑙𝑜×(2𝑙𝑜+𝑙𝑠 ) and𝑏inter ∈ R2𝑙𝑜 are learnable weights
(Denote the size of both 𝑎𝑝 and 𝑏𝑝 as 𝑙𝑜 ).

3.3 Propensity Predictor and Objective
Function

Given the interactional observational embedding 𝒗inter𝑜,𝑝 for each
position 𝑝 , we can leverage a simple feed forward layer to define
the propensity predictor as

𝑜𝑝 = 𝜎 (𝑊 · 𝒗inter𝑜,𝑝 + 𝑏), (8)

where 𝜎 (·) denotes the sigmoid activation function.𝑊 ∈ R2𝑙𝑜 and
𝑏 ∈ R denotes trainable weights.

Subsequently, we leverage a pointwise-based loss to train our
IOBM model. Given the observation ground truth 𝑜𝑝 , the objective
function can be written as follows:
LIOBM (𝑜𝑝 , 𝑜𝑝 ;\ ) = −𝑜𝑝 log𝑜𝑝 − (1−𝑜𝑝 ) log(1−𝑜𝑝 ) + _ | |\ | |22, (9)

where _ is the hyper-parameter controlling the L2 regularization,
and \ represents the kernel weights denoted by𝑊 in Eq. (4), Eq.
(7), Eq. (8) and kernel matrices in LSTM cells.

In practice, the ground truth 𝑜𝑝 isn’t available. [29] proposed
methods to estimate it by randomization of search results. Some
researchers [3, 16] further developed methods for estimating it from
click data offline. More recently, jointly estimating observation and
training a ranker from click data becomes popular [4, 22, 24], since

they do not require a separate experiment to estimate click bias. In
our empirical study, we focus on jointly optimization-based meth-
ods, like DLA [4] and Regression-EM [44] due to space limitation. It
is worth noting that the proposed IOBM is a plug-and-play model,
which can be seamlessly integrated into any IPS-based CLTR frame-
works. The overview of the algorithm for integrating IOBM into
CLTR frameworks is summarized in Algorithm 1.

Algorithm 1 Jointly optimization based CLTR frameworks inte-
grated with IOBM
Require: 𝑄 = {(𝑞, 𝜋𝑞, 𝒄𝑞)}, an IPS-based framework 𝐹

Ensure: a ranking model denoted as 𝑅, an observation IOBM de-
noted as 𝐶

1: Initialize 𝑅 and 𝐶
2: repeat
3: for (𝑞, 𝜋𝑞, 𝒄𝑞) ∈ 𝑄 do
4: for 𝑝 in {1, 2, . . . , |𝜋𝑞 |} do
5: Calculate the propensity prediction 𝑜𝑝 , according to Eq.

(3) - Eq. (8)
6: Based on 𝐹 , train 𝑅 with 𝑜𝑝 , then estimate the target

propensity 𝑜𝑝
7: Train 𝐶 with 𝑜𝑝 , 𝑜𝑝 according to Eq. (9)
8: end for
9: end for
10: until Convergence;
11: return 𝑅, 𝐶

4 EXPERIMENTS
In this section, we show our experimental setup and empirical
results. We have published our code 1 based on Unbiased Learning
To Rank Algorithms (ULTRA) framework [5, 6]. In general, We aim
to answer the following research questions (RQs):
• RQ1: How does IOBM perform on the different user click pat-
terns, compared to existing propensity models?

• RQ2: How do IOBM and PBM-IPS perform on different strengths
of dependencies between click events in the same query session?

• RQ3: Whether IOBM can debias context-dependent examination
bias efficiently?

• RQ4: Will IOBM still perform well when integrated into different
CLTR frameworks and ranking models?

4.1 Experimental Settings
4.1.1 Dataset. We conducted a set of experiments on two bench-
mark LTR datasets.
• Yahoo!2. One of the most widely used benchmarks for ranking.
It contains 29,921 queries with 710k documents, and each query-
document pair has 700 features extracted from real-world search
engines with 5-level relevance labels.

• MSLR-WEB30K3. It contains 31,531 queries with around 3,800k
documents. Each query-document pair has 136 features extracted
by human exports, with 5-level relevance labels as well.

1https://github.com/Keytoyze/Interactional-Observation-Based-Model
2https://webscope.sandbox.yahoo.com/
3https://www.microsoft.com/en-us/research/project/mslr/

https://github.com/Keytoyze/Interactional-Observation-Based-Model
https://webscope.sandbox.yahoo.com/
https://www.microsoft.com/en-us/research/project/mslr/


We followed the given data split of training, validation, and test-
ing of datasets. To generate an initial ranking list for each query,
we followed the process described in [29] and trained a Ranking
SVM model [26] using 1% of the training data with real relevance
labels to sort the documents. Based on these initial ranking lists
generated by the ranker, we simulated click data in the following
ways.

4.1.2 Click Simulation. We considered three click generation mod-
els, PBM, UBM and BDCM, to simulate clicks in three scenarios:
isolated scenario, cascade scenario and non-cascade interactional
scenario, respectively.

PBM. In PBM, the clicks are sampled from examination hypoth-
esis Eq. (1). Following the steps proposed by [12], the relevance
probability is set to be:

Pr(𝑟𝑞𝑝 = 1|𝑞, 𝑝, 𝑜𝑞𝑝 = 1) = 𝜖 + (1 − 𝜖) 2𝑦 − 1
2𝑦max − 1 , (10)

where 𝑦 ∈ [0, 𝑦max] the relevance label of the document locating
at 𝑝 , given by the dataset. In both of two datasets, 𝑦max = 4. 𝜖 is
the noise level describing how much probability a user may click
on an irrelevant document. We had 𝜖 = 0.1 as the default setting
when not mentioned otherwise.

The examination probability is set to be:
Pr𝑃𝐵𝑀 (𝑜𝑞𝑝 = 1 | 𝑞, 𝑝) = 𝜌𝑝 . (11)

We adopted the presentation bias 𝜌𝑝 estimated by Joachims et
al. [39] through eye-tracking experiments.

UBM. The user browsing model (UBM) [15] is a well-known
cascade-based click model. In UBM, a user is modeled as searching
and clicking documents from top to bottom, and the examination
probability is determined by the distance between the current posi-
tion 𝑝 and the last click position 𝑝𝑐 . Similar to PBM, we sampled
clicks according to Eq. (1) and Eq. (10), and the examination proba-
bility is:

Pr𝑈𝐵𝑀 (𝑜𝑞𝑝 = 1 | 𝑞, 𝑝,D) = 𝜌 (𝑝,D), , (12)
whereD is the position distance,D = 𝑝 −𝑝𝑐 . We adopted the value
of 𝜌 (𝑝,D) estimated by numerical experiments over 21 training
sets in [15].

BDCM. To simulate a non-cascade interactional scenario and
model the user behavior of looking back, we proposed a more
complicated setting: a user first looks at documents in the top-down
order, and then continue looking in the reversed order. Formally,
we merged two click sequences generated by two cascade-based
click models (DCM) [20] from opposite directions, which is called
bidirectional cascade-based click model (BDCM). In DCM, a user
examines the results from one end to the other end until she finds
an relevant result, Pr(𝑜 𝑗+1 = 1 | 𝑜 𝑗 = 1, 𝑐 𝑗 = 0) = 1, where
𝑗 ∈ {1, 2, . . . , |𝜋𝑞 | − 1} is the ordinal number. After each click, user
has a chance of not satisfied depending on the current ordinal
number, Pr(𝑜 𝑗+1 = 1 | 𝑜 𝑗 = 1) = _ 𝑗 .

BDCM consists of two DCM models Pr′
𝐷𝐶𝑀

and Pr′′
𝐷𝐶𝑀

from
opposite directions, which generates two click sequences 𝑐 ′ and
𝑐 ′′, respectively. The former is from top to bottom, and the later is
from bottom to top:

Pr′𝐷𝐶𝑀 (𝑜𝑞𝑝 = 1 | 𝑞, 𝑝) =
∏

1≤𝑖<𝑝
(1 − 𝑐 ′𝑖 (1 − _𝑖 )), (13)

Pr′′𝐷𝐶𝑀 (𝑜𝑞𝑝 = 1 | 𝑞, 𝑝) =
∏

𝑝<𝑖≤ |𝜋𝑞 |
(1 − 𝑐 ′′𝑖 (1 − _ |𝜋𝑞 |−𝑖+1)), (14)

where the hyper parameters _ takes a reciprocal formula form in
our settings: _𝑖 = 1

𝑖 .
We sampled 𝑐 ′ step by step according to Eq. (1), Eq. (10) and Eq.

(13), then sampled 𝑐 ′′ step by step according to Eq. (1), Eq. (10) and
Eq. (14). The final output click sequence of BDCM 𝑐 was generated
by merging: 𝑐𝑖 = min{𝑐 ′

𝑖
+ 𝑐 ′′

𝑖
, 1}.

4.1.3 Baselines. We implemented two groups of propensity models
for comparing. The first group has no parameter to train.
• Labeled-data: This model uses the ground truth labels to train
the ranker, to test the performance of the ranking model. Its
performance can be considered as an upper bound for the ranker.

• Click-data: This model just uses the raw click data to train the
ranker, without any correction.
The second group is existing IPS propensity models, to be trained

along with a ranking model and provide a propensity estimation
for it. For each query, only the top 𝑁 documents were considered
to be displayed. In our case, we set 𝑁 = 10.
• PBM-IPS: This model has 𝑁 parameters to describe the propen-
sity scores depend on position.

• UBM-IPS: Thismodel has 𝑁 (𝑁+1)
2 parameters, to feed each value

of the user browsing function 𝜌 (𝑝,D).
• DCM-IPS: This model is proposed by [41], and uses a DCM click
model to estimate the observation probability.

• CPBM-IPS: Proposed by [16], this model uses an MLP to map a
context feature vector to position-based propensity scores. We
implemented this baseline with a hidden layer with size 256 and
elu activation.
It’s worth noting that PBM-IPS is the most suitable model for

PBM setting, and UBM-IPS is the most suitable model for UBM
setting. By comparing with them, we can find whether IOBM could
mine the user’s click pattern correctly.

4.1.4 Training and Evaluation. To make fair comparisons, we fixed
the unbiased LTR framework to DLA [4], and integrated different
propensity models into them to test their performances. We trained
these methods with a batch size of 256. For the ranker side, follow-
ing [41], we fixed the ranker to a DNN, with the loss being softmax
cross-entropy. We used three layers with sizes {512, 256, 128} and
elu activation, and the last two layers use dropout with a drop-
ping probability of 0.1. We used SGD to train the ranker, with a
learning rate of 0.03 for Yahoo! and 0.3 for MSLR-WEB30K. For
the propensity model side, we also used SGD to train the param-
eters, with a learning rate selected from {0.3, 0.03}. To avoid ex-
ploding variance, we used a propensity clipping constant of 100
based on [38]. For IOBM, we select the hyper parameter _ from
{0.1, 0.01, 0.001, 0.0001, 0}, and set 𝑙𝑝 = 𝑙𝑐 = 4, 𝑙𝑜 = 8.

We used NDCG@1, NDCG@3, NDCG@5, and NDCG@10 as
the main performance metrics. We have also computed the MRR
metric, with binarizing the relevance by clipping the label above
1. Each model was trained for 15K epochs, and we adopted the
hyperparameters with the best results based on NDCG@10 tested



Table 1: Comparison of different IPS method under two datasets and three click generation models. Significant performance
improvements (t-test with p-value < 0.05) with PBM-IPS and the best baseline are denoted as + and † respectively.

Click
Model

Propensity
Model

Yahoo! MSLR-WEB30K

MRR NDCG@𝑘 MRR NDCG@𝑘

𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 10 𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 10
Labeled Data (Upper Bound) 0.9343 0.6826 0.6842 0.7054 0.7541 0.8338 0.3873 0.3828 0.3888 0.4113

PBM

IOBM 0.9262 0.6746 0.6783 0.7000 0.7484 0.8276 0.3691+ 0.3672+ 0.3765+ 0.4005+

PBM-IPS 0.9257 0.6742 0.6779 0.6990 0.7479 0.8288 0.3493 0.3576 0.3693 0.3953
CPBM-IPS 0.9225 0.6674 0.6717 0.6938 0.7434 0.7764 0.3371 0.3310 0.3394 0.3616
UBM-IPS 0.9256 0.6726 0.6773 0.6995 0.7481 0.8285 0.3643+ 0.3653+ 0.3754+ 0.3996+
DCM-IPS 0.9216 0.6577 0.6652 0.6884 0.7394 0.8222 0.3308 0.3428 0.3568 0.3858
Click Data 0.9217 0.6564 0.6643 0.6875 0.7386 0.8201 0.3257 0.3370 0.3512 0.3800

UBM

IOBM 0.9264+ 0.6755+ 0.6802+ 0.7011+ 0.7495+ 0.8237+ 0.3818† 0.3738† 0.3809† 0.4038†
PBM-IPS 0.9238 0.6704 0.6737 0.6957 0.7447 0.7917 0.3581 0.3517 0.3588 0.3803
CPBM-IPS 0.9238 0.6704 0.6730 0.6956 0.7450 0.7824 0.3525 0.3431 0.3512 0.3717
UBM-IPS 0.9255+ 0.6759+ 0.6797+ 0.7006+ 0.7493+ 0.8234+ 0.3783+ 0.3722+ 0.3797+ 0.4023+
DCM-IPS 0.9243 0.6699 0.6772+ 0.6987+ 0.7471+ 0.8322+ 0.3666+ 0.3687+ 0.3783+ 0.4023+
Click Data 0.9243 0.6707 0.6769+ 0.6988+ 0.7476+ 0.8326+ 0.3640+ 0.3674+ 0.3777+ 0.4019+

BDCM

IOBM 0.9265+ 0.6750+ 0.6783+ 0.6991+ 0.7480+ 0.8082+ 0.3696+ 0.3635† 0.3700† 0.3912†
PBM-IPS 0.9246 0.6707 0.6732 0.6955 0.7448 0.7916 0.3585 0.3505 0.3579 0.3786
CPBM-IPS 0.9240 0.6702 0.6734 0.6952 0.7444 0.7899 0.3562 0.3474 0.3548 0.3757
UBM-IPS 0.9252 0.6733+ 0.6753+ 0.6968 0.7462+ 0.8082+ 0.3681+ 0.3611+ 0.3678+ 0.3891+
DCM-IPS 0.9205 0.6591 0.6629 0.6852 0.7365 0.6837 0.2587 0.2566 0.2648 0.2875
Click Data 0.9259 0.6750+ 0.6778+ 0.6987+ 0.7475+ 0.8063+ 0.3680+ 0.3613+ 0.3677+ 0.3890+

on the validation set. We run each experiment over 6 runs and
reported the average results testing on the test set.

4.2 Click Settings Study (RQ1)
Table 1 summarizes the results about the performance of different
propensity models under different settings. Particularly, we have
the following findings:
• In the UBM settings, our model and UBM-IPS perform signifi-
cantly better than PBM-IPS. This proves the necessity of introduc-
ing interactions in propensity estimation. In the BDCM settings
where the document observation will be affected by all of the
other documents, our model performs the best compared to other
baseline IPS methods. These results prove that our model can
find the correct user patterns hidden in the data, and perform
similarly to (even better than) the best-fitted IPS model, if it exists.

• The propensity models that best fit the click generation mod-
els perform well in debiasing click data. However, a misused
propensity model will estimate a wrong inversed propensity
score, which leads to poor performance and even worse than the
raw click data. Our model is robust regard of any click setting
and always performs at the top level.

• Using raw click data from UBM and BDCM to train the ranker
directly could get better performance, compared to PBM. One
explanation is that documents listing at the bottom have a higher
opportunity to be observed in these two click models, which
dramatically reduces the click bias.

• In PBM settings, our model and UBM-IPS still perform better
than PBM-IPS, especially on the MSLR-WEB30K dataset. One
possible reason is that considering click signals of other docu-
ments can make the model stronger. It is beneficial even when
the documents in the same session are independent.

• Human labeled data achieves the best performance and any IPS-
based algorithm can still not beat it. There is still room for im-
provement in CLTR.

4.3 Dependency Study (RQ2)
To answer RQ2, we propose another hyper parameter 𝜎 ∈ [0, 1]
to control the click dependency strength in the click generation
model. The observation probability of this model is defined to be

Pr(𝑜𝑝𝑞 = 1|𝑞, 𝑝, 𝑝𝑐 , 𝜎) = 𝜎𝜌 (𝑝,D) + (1 − 𝜎)𝜌 (𝑝), (15)

where 𝜌 (𝑝,D) and 𝜌 (𝑘) are the hyper parameters in UBM (Eq. (12))
and PBM (Eq. (11)) click generation models, respectively. Similarly,
we sampled the clicks according to Eq. (1), Eq. (10) and Eq. (15).
Note that the higher the value of 𝜎 , the strongest dependency is
held in click sequence generated. 𝜎 = 0 and 𝜎 = 1 mean that the
model degrades into PBM and UBM, respectively.

The performance across different 𝜎 is shown in Figure 3(a). We
can notice that our model achieves the best performance since it
properly handles interaction. The PBM-IPS only works when there
is low dependence in the clicks, while its advantage over the click
data diminishes with increased dependency. For a large dependency,
PBM-IPS performs even worse than the raw click data. This proves
once again that assuming the click independent cannot debias click
data correctly, and our model could keep a stable well performance
in all kinds of click settings.

4.4 Query Context-Dependency Study (RQ3)
We conducted a query context-dependency study in PBM settings
to answer RQ3. In order to control the context-dependency, we
adopted the methodology proposed by [16, 40] to modify the PBM
observation probability. We set



(a) Performance across Dependency Level (b) Performance across Context-Dependency Level (c) Standard Deviation of (b)

Figure 3: (a) Performance IOBM against PBM-IPS across different levels of dependency strength. The variance is displayed
with the shadow areas. (b)(c) Performances and their standard deviations of different propensity models with different levels
of context-dependency.

(a) Regression-EM (b) DLA (c) DLA with SetRank

Figure 4: Performances improvement by IOBM in different CLTR frameworks and ranking models across number of training
clicks. Clicks generated by UBM. The variance is displayed with the shadow areas.

Pr𝐶𝑜𝑛𝑡𝑒𝑥𝑡−𝑃𝐵𝑀 (𝑜𝑞𝑝 = 1|𝑞, 𝑝, 𝒙𝑞) = 𝜌
max{𝒘 ·𝒙𝑞+1,0}
𝑘

, (16)

where 𝒙𝑞 is the query context vector of query𝑞.𝒘 is a ten-dimensional
vector which is drawn uniformly from [−[, [], where [ is a hyper
parameter controlling the strength of context-dependency. Follow-
ing [40], we calculated 𝒙𝑞 in the following ways: first, we trained
ExtRa Trees [17] from queries in the total dataset, with normalized
features and relevance. Then we selected and combined the top-10
important features as the document context features. Finally, we
averaged all document context features in the same query as our
query context feature 𝑥𝑞 . We conducted an ablation study by replac-
ing Query Context Features with a zero constant vector, to block
any query contextual information input. This model is denoted as
IOBM𝑛𝑜−𝑐𝑜𝑛𝑡𝑒𝑥𝑡 . We also trained CPBM-IPS with 𝒙𝑞 as a baseline.

Figure 3(b) and 3(c) shows the average performance values and
their standard deviations. We can see that when [ = 0, there is no
contextual bias in the click data, so IOBM, IOBM𝑛𝑜−𝑐𝑜𝑛𝑡𝑒𝑥𝑡 , and
PBM-IPS models behavior similarly. With the increasing context-
dependency, the performance of PBM-IPS and IOBM𝑛𝑜−𝑐𝑜𝑛𝑡𝑒𝑥𝑡
decrease dramatically, and their standard deviations of NDCG@10
increase continuously, which indicates that a lack of context fea-
tures input will lead to bad and volatile performance when position
bias varying from query to query. In contrast, IOBM and CPBM-
IPS always keep stable performance and low variance regardless
of how severe contextual bias is. Besides, IOBM always performs

significantly better than CPBM-IPS, which verifies the effectiveness
of the proposed embedding method.

4.5 Generalizability Study (RQ4)
The previous study focused on the DLA framework with a DNN as
the rankingmodel. To answer RQ4, we conductedmore experiments
on different unbiased LTR frameworks and different rankingmodels,
where the click generation model is UBM. Here we tried three
combinations:
• Regression-EM. Proposed by [44], the Regression-EM algorithm
uses an EM framework to estimate propensity scores and ranking
scores. We modified the M-step of position propensity updating,
to train our IOBM model with the target that Regression-EM
predicts, which is marked as Regression-EM-IOBM. A simple
linear layer is used for relevance prediction.

• DLA. Proposed by [4], DLA views learning ranking models and
learning IPS to be a dueling problem.We replace the raw position-
dependent propensity model with our model, marked as DLA-
IOBM.

• DLAwith SetRank. The rankingmodel of the initial DLA frame-
work is a DNN. We modified the ranking model to SetRank [34],
which can capture the cross-document interactions in the rank-
ing list. The IOBM version of DLA with SetRank is marked as
SetRank-IOBM.



From Figure 4, we can see that our model significantly improves
the performance of all of the frameworks and ranking models. With
the increase in the number of training clicks, our model gets better
performance. This shows the possibility of generalizing our model
to the joint learning of propensities and unbiased ranker.

5 RELATEDWORK
Here we review the related work from the two subareas: coun-
terfactual learning to rank and interactional effect in learning to
rank.
Counterfactual Learning to Rank. CLTR is an area introducing
causal inferences to eliminate bias from LTR with implicit feedback.
Previous works have mainly focused on position bias. [29] proposed
the Inverse Propensity Scoring (IPS) method to reweigh the clicked
documents based on the reciprocal of their observation propensi-
ties to achieve an unbiased estimate of the ranking objective. [29]
adapted the Rank-SVM [25] to optimize IPS estimates. [1] provided
a framework that can optimize any differentiable model w.r.t. an
IPS estimation. The propensity scores are estimated by randomized
interventions [29, 43], which unfortunately hurt the user’s search
experience. To avoid such interventions, [3, 16] further proposed
to harvest intervention by exploiting historic click data with mul-
tiple different ranking functions. Despite their effectiveness, the
strict assumption to construct interventional sets impedes their
applicability. Recently, some researchers proposed to jointly esti-
mate relevance and position bias, like Regression-EM [44], DLA [4]
and Unbiased LambdaMART [22]. Note that our model could be
seamlessly integrated into these IPS-based frameworks.

On the other side, researchers have attempted to develop models
to deal with more types of click bias, based on the IPS framework.
[2] modeled click noise as the position-dependent trust bias and
proposed TrustPBM integrated with Regression EM framework
and Beyes-IPS correction method. [16] proposed CPBM based on
intervention harvest to address contextual bias where position bias
varies from query to query. [33] studied the top-𝑘 ranking case
where some items have no possibility to display, and introduced a
policy-aware CLTR approach to addressing selection bias. [21] pro-
posed a framework that allows multiple types of implicit feedback
and incorporates related click models in a grid-based search sce-
nario. [41] introduced cascade model-based click model into CLTR
to address cascade bias where clicks obey a predefined model. In
this work, we consider a novel interactional bias, since interactions
among observations/clicks in the same ranking list are dominant
in some domains.
Interactional Effect in Learning to Rank. In a ranking list, the
relevance of a document would be influenced by other documents.
This effects can be captured in the design of loss function, like pair-
wise [10] and list-wise [11]. Recently, taking a whole list of docu-
ments as input and directly ranking them together becomes popular
[34, 36]. While these methods could capture cross-document rela-
tionships, the bias existing in click data cannot be eliminated. [24]
proposed DRSR model to debias click data in a cascade scenario
based on CLTR, which incorporates all the top-down contents in
the list as context information and estimate the probability of user’s

conditional click rate. However, these methods only consider inter-
document effects, regardless of the interactions between user’s
click.

Some researchers try to incorporate partial click data in the same
query session to find user’s behavior patterns. Using click models
to predict click events is one of the methods to capture click interac-
tion. Click models typically design a set of rules that describe user
browsing behavior. For example, in cascade-based click models like
UBM [15], DCM [20], DBN [13] and CCM [19], users are assumed
to examine the results from top to bottom, where each next click
depends on the previous click. These click models often have contra-
dictory assumptions, and a well-specified model is not available in
prior. Another kind of click model uses a universal adaptive neural
model to learn the user click pattern from data [8, 9, 14]. However,
click models commonly focus the most on predicting click events,
rather than optimizing the overall ranking performance [4, 29]. The
construction of click models usually separated from the learning
to rank models, and the relevance estimation is an afterthought
[29]. Besides, most click models need to be constructed offline and
require each query-document pair to appear multiple times for
reliable performance [4].

Based on CLTR, [41] recently proposed to remove the cascade
bias with a predefined and simple click model, which is aligned with
our spirit of eliminating interactional bias. However, in practice, a
well-specified and predefined model of click behavior is not avail-
able in prior. Our proposed model can directly learn the complex
interaction patterns with query context from click data.

6 CONCLUSION
In this work, we propose the Interactional Observation-BasedModel
(IOBM) to estimate the observation probability in a more general
observation/clicks interaction settings. We first analyze two tradi-
tional IPS-based models, PBM and CPBM, in a causal view. Then we
extend the assumption of the propensity model and introduce IOBM.
Since there exist complex observed and unobserved confounders,
we use the embedding as a substitute confounder to uncover the rel-
evant information for the prediction of the observation propensity.
We implement IOBM with two components, an Individual Observa-
tion Embedding learning the click and position information from a
specific user observation event, and an Interactional Observation
Embedding uncovering the hidden relationship among observa-
tions. Additionally, we utilize query context features and propose
the intra-observation attention and inter-observation attention, to
filter out irrelevant information and reduce contextual bias. The
proposed IOBM is a plug-and-play model, which can be seamlessly
integrated into any IPS-based CLTR frameworks. Extensive experi-
ments on two LTR benchmark datasets demonstrate that our model
consistently improves the performance of CLTR, in different click
settings. In future work, it would be interesting to extend our basic
idea of eliminating interactional bias into more CLTR frameworks,
like non-IPS based CLTR [24, 40].
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